-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
58 lines (44 loc) · 1.51 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from util import html
import time
import datetime
opt = TestOptions().parse()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
print(opt.how_many)
print(len(dataset))
model = model.eval()
print(model.training)
# Count start time
prev_time = time.time()
opt.how_many = 999999
# test
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
img_path = model.get_image_paths()
img_path = [img_path]
print(img_path)
visualizer.save_images(webpage, visuals, img_path)
# Determine approximate time left
iters_left = (len(dataset) / opt.batchSize) - (i + 1)
time_left = datetime.timedelta(seconds=iters_left * (time.time() - prev_time))
prev_time = time.time()
print(' process %d/%d img ... %s' % (i, opt.how_many, time_left))
webpage.save()