You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@braincxx Hi, I recently encountered the same issue as you. May I ask if your input is also 5-dimensional? Have you found a solution to this problem? When my input is [1,3,16,640,640], I ran into the following issue:
ValueError: Traceback (most recent call last):
File "rknn/api/rknn_log.py", line 309, in rknn.api.rknn_log.error_catch_decorator.error_catch_wrapper
File "rknn/api/rknn_base.py", line 1945, in rknn.api.rknn_base.RKNNBase.build
File "rknn/api/rknn_base.py", line 176, in rknn.api.rknn_base.RKNNBase._quantize
File "rknn/api/quantizer.py", line 1397, in rknn.api.quantizer.Quantizer.run
File "rknn/api/quantizer.py", line 899, in rknn.api.quantizer.Quantizer._get_layer_range
File "rknn/api/rknn_utils.py", line 274, in rknn.api.rknn_utils.get_input_img
File "rknn/api/rknn_log.py", line 95, in rknn.api.rknn_log.RKNNLog.e
ValueError: The height_width of r_shape [16, 640, 640] is invalid!
Have you encountered a similar issue? I'm looking forward to your response.
im trying convert model (cnn+lstm) from onnx to rknn for rk3588
My code:
shape = (1, 7, 3, 608, 184)
import numpy as np
img_means = (np.array((0.19007764876619865, 0.15170388157131237, 0.10659445665650864)) * 255).tolist()
img_stds = (np.array((0.2610784009469139, 0.25729316928935814, 0.25163823815039915)) * 255).tolist()
from rknn.api import RKNN
rknn = RKNN(verbose=True)
rknn.config(mean_values=img_means + [0, 0, 0, 0], std_values=img_stds + [0, 0, 0, 0], target_platform='rk3588')
#ret = rknn.load_pytorch(model=path2torch_converted_model, input_size_list=[list(shape)])
ret = rknn.load_onnx(model=path2onnx_model, input_size_list=[list(shape)])
my output:
I rknn-toolkit2 version: 2.2.0
I Loading : 100%|█████████████████████████████████████████████████| 26/26 [00:00<00:00, 1054.44it/s]
D base_optimize ...
D base_optimize done.
D
D fold_constant ...
/root/miniconda3/envs/rknn/lib/python3.10/site-packages/rknn/api/rknn.py:192: RuntimeWarning: divide by zero encountered in divide
return self.rknn_base.build(do_quantization=do_quantization, dataset=dataset, expand_batch_size=rknn_batch_size)
/root/miniconda3/envs/rknn/lib/python3.10/site-packages/rknn/api/rknn.py:192: RuntimeWarning: invalid value encountered in divide
return self.rknn_base.build(do_quantization=do_quantization, dataset=dataset, expand_batch_size=rknn_batch_size)
D fold_constant done.
D fold_constant remove nodes = ['/rnn/Expand_3', '/rnn/Concat_3', 'Unsqueeze_104', '/rnn/Gather_3', '/rnn/Shape_3', '/rnn/Expand_2', '/rnn/Concat_2', 'Unsqueeze_95', '/rnn/Gather_2', '/rnn/Shape_2', '/rnn/Expand_1', '/rnn/Concat_1', 'Unsqueeze_81', '/rnn/Gather_1', '/rnn/Shape_1', '/rnn/Expand', '/rnn/Concat', 'Unsqueeze_72', '/rnn/Gather', '/rnn/Shape']
D Fixed the shape information of some tensor!
D
D correct_ops ...
D correct_ops done.
D
D fuse_ops ...
D fuse_ops results:
D fuse_reshape_transpose: remove node = ['/rnn/Transpose']
D squeeze_to_4d_slice: remove node = [], add node = ['input_rs', '/Slice_output_0-rs']
D squeeze_to_4d_slice: remove node = [], add node = ['input_rs#1', '/Slice_1_output_0-rs']
D squeeze_to_4d_concat: remove node = [], add node = ['/Slice_output_0_rs', '/Slice_1_output_0_rs', '/Concat_output_0-rs']
D convert_squeeze_to_reshape: remove node = ['/rnn/Squeeze'], add node = ['/rnn/Squeeze_2rs']
D convert_squeeze_to_reshape: remove node = ['/rnn/Squeeze_1'], add node = ['/rnn/Squeeze_1_2rs']
D unsqueeze_to_4d_transpose: remove node = [], add node = ['/rnn/Squeeze_1_output_0_rs', '/rnn/Transpose_1_output_0-rs']
D convert_matmul_to_exmatmul: remove node = ['/linear/MatMul'], add node = ['/rnn/Transpose_1_output_0_tp', '/rnn/Transpose_1_output_0_tp_rs', '/linear/MatMul', '/linear/MatMul_output_0_mm_tp', '/linear/MatMul_output_0_mm_tp_rs']
D unsqueeze_to_4d_add: remove node = [], add node = ['/linear/MatMul_output_0_rs', 'output-rs']
D fuse_lstm_transpose_reshape: remove node = ['/rnn/Squeeze_2rs', '/rnn/LSTM'], add node = ['/rnn/LSTM']
D fuse_lstm_transpose_reshape: remove node = ['/rnn/Squeeze_1_2rs', '/rnn/LSTM_1'], add node = ['/rnn/LSTM_1']
D unsqueeze_to_4d_transpose: remove node = [], add node = ['/rnn/Transpose_1_output_0_rs', '/rnn/Transpose_1_output_0_tp-rs']
D input_align_4D_add: remove node = ['/linear/Add'], add node = ['/linear/Add']
D bypass_two_reshape: remove node = ['/Slice_output_0_rs', '/Slice_output_0-rs', '/Slice_1_output_0_rs', '/Slice_1_output_0-rs', '/Reshape', '/Concat_output_0-rs']
D fuse_reshape_transpose: remove node = ['/rnn/Transpose_1']
D fuse_two_reshape: remove node = ['/rnn/Transpose_1_output_0-rs']
D bypass_two_reshape: remove node = ['/rnn/Transpose_1_output_0_tp_rs', '/rnn/Transpose_1_output_0_tp-rs', '/linear/MatMul_output_0_rs', '/linear/MatMul_output_0_mm_tp_rs']
D fuse_two_reshape: remove node = ['/rnn/Squeeze_1_output_0_rs']
D swap_transpose_add: remove node = ['/linear/MatMul_output_0_mm_tp', '/linear/Add'], add node = ['/linear/Add', '/linear/MatMul_output_0_mm_tp']
D fuse_exmatmul_add: remove node = ['/linear/Add', '/linear/MatMul'], add node = ['/linear/MatMul']
D convert_exmatmul_to_conv: remove node = ['/linear/MatMul'], add node = ['/linear/MatMul']
D fold_constant ...
D fold_constant done.
D fuse_ops done.
D
D sparse_weight ...
D sparse_weight done.
D
I rknn building ...
I RKNN: [17:16:46.556] compress = 0, conv_eltwise_activation_fuse = 1, global_fuse = 1, multi-core-model-mode = 7, output_optimize = 1, layout_match = 1, enable_argb_group = 0, pipeline_fuse = 0, enable_flash_attention = 0
I RKNN: librknnc version: 2.2.0 (c195366594@2024-09-14T12:24:14)
D RKNN: [17:16:47.381] RKNN is invoked
W RKNN: [17:16:48.557] Model initializer tensor data is empty, name: empty_placeholder_0
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNExtractCustomOpAttrs
D RKNN: [17:16:48.559] <<<<<<<< end: rknn::RKNNExtractCustomOpAttrs
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNSetOpTargetPass
D RKNN: [17:16:48.559] <<<<<<<< end: rknn::RKNNSetOpTargetPass
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNBindNorm
D RKNN: [17:16:48.559] <<<<<<<< end: rknn::RKNNBindNorm
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNEliminateQATDataConvert
D RKNN: [17:16:48.559] <<<<<<<< end: rknn::RKNNEliminateQATDataConvert
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNTileGroupConv
D RKNN: [17:16:48.559] <<<<<<<< end: rknn::RKNNTileGroupConv
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNAddConvBias
D RKNN: [17:16:48.559] <<<<<<<< end: rknn::RKNNAddConvBias
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNTileChannel
D RKNN: [17:16:48.559] <<<<<<<< end: rknn::RKNNTileChannel
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNPerChannelPrep
D RKNN: [17:16:48.559] <<<<<<<< end: rknn::RKNNPerChannelPrep
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNBnQuant
D RKNN: [17:16:48.559] <<<<<<<< end: rknn::RKNNBnQuant
D RKNN: [17:16:48.559] >>>>>> start: rknn::RKNNFuseOptimizerPass
D RKNN: [17:16:48.560] <<<<<<<< end: rknn::RKNNFuseOptimizerPass
D RKNN: [17:16:48.560] >>>>>> start: rknn::RKNNTurnAutoPad
D RKNN: [17:16:48.560] <<<<<<<< end: rknn::RKNNTurnAutoPad
D RKNN: [17:16:48.560] >>>>>> start: rknn::RKNNInitRNNConst
D RKNN: [17:16:48.562] <<<<<<<< end: rknn::RKNNInitRNNConst
D RKNN: [17:16:48.562] >>>>>> start: rknn::RKNNInitCastConst
D RKNN: [17:16:48.562] <<<<<<<< end: rknn::RKNNInitCastConst
D RKNN: [17:16:48.562] >>>>>> start: rknn::RKNNMultiSurfacePass
D RKNN: [17:16:48.562] <<<<<<<< end: rknn::RKNNMultiSurfacePass
D RKNN: [17:16:48.562] >>>>>> start: rknn::RKNNReplaceConstantTensorPass
D RKNN: [17:16:48.562] <<<<<<<< end: rknn::RKNNReplaceConstantTensorPass
D RKNN: [17:16:48.562] >>>>>> start: rknn::RKNNSubgraphManager
D RKNN: [17:16:48.562] <<<<<<<< end: rknn::RKNNSubgraphManager
D RKNN: [17:16:48.562] >>>>>> start: OpEmit
D RKNN: [17:16:48.564] <<<<<<<< end: OpEmit
D RKNN: [17:16:48.564] >>>>>> start: rknn::RKNNAddFirstConv
D RKNN: [17:16:48.564] <<<<<<<< end: rknn::RKNNAddFirstConv
D RKNN: [17:16:48.564] >>>>>> start: rknn::RKNNTilingPass
D RKNN: [17:16:48.570] <<<<<<<< end: rknn::RKNNTilingPass
D RKNN: [17:16:48.570] >>>>>> start: rknn::RKNNLayoutMatchPass
D RKNN: [17:16:48.570] <<<<<<<< end: rknn::RKNNLayoutMatchPass
D RKNN: [17:16:48.570] >>>>>> start: rknn::RKNNAddSecondaryNode
D RKNN: [17:16:48.570] <<<<<<<< end: rknn::RKNNAddSecondaryNode
D RKNN: [17:16:48.570] >>>>>> start: rknn::RKNNAllocateConvCachePass
D RKNN: [17:16:48.570] <<<<<<<< end: rknn::RKNNAllocateConvCachePass
D RKNN: [17:16:48.570] >>>>>> start: OpEmit
E RKNN: [17:16:52.762] buffer overflow!!!
The text was updated successfully, but these errors were encountered: