Telemetry suite for logging data from your robot π€.
- Windows 10
- Ubuntu 20.04, 22.04
- macOS >= 10.15
It is possible to install on linux
, macOS
and Windows
via conda, just running:
conda install -c conda-forge librobometry
The dependencies are:
- CMake (minimum version 3.12)
- Boost
- matio-cpp (minimum version 0.1.1)
- nlohmann_json (minimum version 3.10.0)
- Catch2 (v3.7.1, for the unit tests)
The optional dependencies are:
git clone https://github.com/robotology/robometry
cd robometry
mkdir build && cd build
cmake ../
make
[sudo] make install
Notice: sudo is not necessary if you specify the CMAKE_INSTALL_PREFIX. In this case it is necessary to add in the .bashrc or .bash_profile the following lines:
export robometry_DIR=/path/where/you/installed/
With IDE build tool facilities, such as Visual Studio:
git clone https://github.com/robotology/robometry
cd robometry
mkdir build && cd build
cmake ..
cmake --build . --target ALL_BUILD --config Release
cmake --build . --target INSTALL --config Release
In order to allow CMake finding robometry, you have to specify the path where you installed in the CMAKE_PREFIX_PATH
or exporting the robometry_DIR
env variable pointing to the same path.
In order to use this library in your own application, add this lines in your CMakeLists.txt
find_package(robometry)
add_executable(myApp)
target_link_libraries(myApp robometry::robometry)
Here is the code snippet for dumping in a .mat
file 3 samples of the scalar variables "one"
and "two"
. The type of the channel is inferred when pushing the first time
robometry::BufferConfig bufferConfig;
// We use the default config, setting only the number of samples (no auto/periodic saving)
bufferConfig.n_samples = n_samples;
robometry::BufferManager bm(bufferConfig);
bm.setFileName("buffer_manager_test");
robometry::ChannelInfo var_one{ "one", {1} };
robometry::ChannelInfo var_two{ "two", {1} };
bool ok = bm.addChannel(var_one);
ok = ok && bm.addChannel(var_two);
if (!ok) {
std::cout << "Problem adding variables...."<<std::endl;
return 1;
}
for (int i = 0; i < 3; i++) {
bm.push_back(i , "one");
std::this_thread::sleep_for(std::chrono::milliseconds(200));
bm.push_back(i + 1.0, "two");
}
if (bm.saveToFile())
std::cout << "File saved correctly!" << std::endl;
else
std::cout << "Something went wrong..." << std::endl;
And here is the resulting .mat file:
buffer_manager_test =
struct with fields:
description_list: {[1Γ0 char]}
two: [1Γ1 struct]
one: [1Γ1 struct]
buffer_manager_test.one =
struct with fields:
data: [1Γ3 int32]
dimensions: [1 3]
elements_names: {'element_0'}
units_of_measure: {'n.d.'}
name: 'one'
timestamps: [1.6481e+09 1.6481e+09 1.6481e+09]
It is possible to save and dump also vector variables.
Here is the code snippet for dumping in a .mat
file 3 samples of the 4x1 vector variables "one"
and "two"
.
robometry::BufferConfig bufferConfig;
bufferConfig.auto_save = true; // It will save when invoking the destructor
bufferConfig.channels = { {"one", {4,1}, {}, {"meters"}}, {"two", {4,1}, {}, {"degrees"}} };
bufferConfig.filename = "buffer_manager_test_vector";
bufferConfig.n_samples = 3;
robometry::BufferManager bm_v(bufferConfig); //Only vectors of doubles are accepted
for (int i = 0; i < 3; i++) {
bm_v.push_back({ i+1.0, i+2.0, i+3.0, i+4.0 }, "one");
std::this_thread::sleep_for(std::chrono::milliseconds(200));
bm_v.push_back({ (double)i, i*2.0, i*3.0, i*4.0 }, "two");
}
buffer_manager_test_vector =
struct with fields:
description_list: {[1Γ0 char]}
two: [1Γ1 struct]
one: [1Γ1 struct]
>> buffer_manager_test_vector.one
ans =
struct with fields:
data: [4Γ1Γ3 double]
dimensions: [4 1 3]
elements_names: {4Γ1 cell}
units_of_measure: {4Γ1 cell}
name: 'one'
timestamps: [1.6481e+09 1.6481e+09 1.6481e+09]
>> buffer_manager_test_vector.one.elements_names
ans =
4Γ1 cell array
{'element_0'}
{'element_1'}
{'element_2'}
{'element_3'}
>> buffer_manager_test_vector.one.units_of_measure
ans =
4Γ1 cell array
{'m'}
{'m'}
{'m'}
{'m'}
It is also possible to specify the name of the elements of each variable with
robometry::ChannelInfo var_one{ "one", {4,1}, {"A", "B", "C", "D"}, {"m", "cm", "mm", "nm"}};
Here is the code snippet for dumping in a .mat
file 3 samples of the 2x3 matrix variable"one"
and of the 3x2 matrix variable "two"
.
BufferManager
expects all the inputs to be of vector types, but then input is remapped into a matrix of the specified type.
robometry::BufferManager bm_m;
bm_m.resize(3);
bm_m.setFileName("buffer_manager_test_matrix");
bm_m.enablePeriodicSave(0.1); // This will try to save a file each 0.1 sec
bm_m.setDefaultPath("/my/preferred/path");
bm_m.setDescriptionList({"head", "left_arm"});
std::vector<robometry::ChannelInfo> vars{ { "one",{2,3} },
{ "two",{3,2} } };
bool ok = bm_m.addChannels(vars);
if (!ok) {
std::cout << "Problem adding variables...."<<std::endl;
return 1;
}
for (int i = 0; i < 3; i++) {
bm_m.push_back({ i + 1, i + 2, i + 3, i + 4, i + 5, i + 6 }, "one");
std::this_thread::sleep_for(std::chrono::milliseconds(200));
bm_m.push_back({ i * 1, i * 2, i * 3, i * 4, i * 5, i * 6 }, "two");
}
>> buffer_manager_test_matrix.one
ans =
struct with fields:
data: [2Γ3Γ3 int32]
dimensions: [2 3 3]
name: 'one'
timestamps: [112104.7605783 112104.9608881 112105.1611651]
It is possible to save and dump vectors and matrices into nested mat
structures. To add an element into the matlab struct the you should use the separator ::
. For instance the to store a vector in A.B.C.my_vector
you should define the channel name as A::B::C::my_vector
Here is the code snippet for dumping in a .mat
file 3 samples of the 4x1 vector variables "one"
and "two"
into struct1
and struct2
.
robometry::BufferConfig bufferConfig;
bufferConfig.auto_save = true; // It will save when invoking the destructor
bufferConfig.channels = { {"struct1::one",{4,1}}, {"struct1::two",{4,1}}, {"struct2::one",{4,1}} }; // Definition of the elements into substruct
bufferConfig.filename = "buffer_manager_test_nested_vector";
bufferConfig.n_samples = 3;
robometry::BufferManager bm_v(bufferConfig);
for (int i = 0; i < 3; i++) {
bm_v.push_back({ i+1.0, i+2.0, i+3.0, i+4.0 }, "struct1::one");
std::this_thread::sleep_for(std::chrono::milliseconds(200));
bm_v.push_back({ (double)i, i*2.0, i*3.0, i*4.0 }, "struct1::two");
std::this_thread::sleep_for(std::chrono::milliseconds(200));
bm_v.push_back({ (double)i, i/2.0, i/3.0, i/4.0 }, "struct2::one");
}
buffer_manager_test_nested_vector =
struct with fields:
description_list: {[1Γ0 char]}
struct2: [1Γ1 struct]
struct1: [1Γ1 struct]
>> buffer_manager_test_nested_vector.struct1
ans =
struct with fields:
two: [1Γ1 struct]
one: [1Γ1 struct]
>> buffer_manager_test_nested_vector.struct1.one
ans =
struct with fields:
data: [4Γ1Γ3 double]
dimensions: [4 1 3]
name: 'one'
timestamps: [1.6415e+09 1.6415e+09 1.6415e+09]
BufferManager
can be used to store channels of different types, including struct
s. In order to store a struct
, it is necessary to use the VISITABLE_STRUCT
macro (see https://github.com/garbageslam/visit_struct). The available conversions depend on matio-cpp
.
struct testStruct
{
int a;
double b;
};
VISITABLE_STRUCT(testStruct, a, b);
...
robometry::BufferManager bm;
robometry::BufferConfig bufferConfig;
robometry::ChannelInfo var_int{ "int_channel", {1}};
robometry::ChannelInfo var_double{ "double_channel", {1}};
robometry::ChannelInfo var_string{ "string_channel", {1}};
robometry::ChannelInfo var_vector{ "vector_channel", {4, 1}};
robometry::ChannelInfo var_struct{ "struct_channel", {1}};
bm.addChannel(var_int);
bm.addChannel(var_double);
bm.addChannel(var_string);
bm.addChannel(var_vector);
bm.addChannel(var_struct);
bufferConfig.n_samples = 3;
bufferConfig.filename = "buffer_manager_test_multiple_types";
bufferConfig.auto_save = true;
bm.configure(bufferConfig);
testStruct item;
for (int i = 0; i < 3; i++) {
bm.push_back(i, "int_channel");
bm.push_back(i * 1.0, "double_channel");
bm.push_back("iter" + std::to_string(i), "string_channel");
bm.push_back({i + 0.0, i + 1.0, i + 2.0, i + 3.0}, "vector_channel");
item.a = i;
item.b = i;
bm.push_back(item, "struct_channel");
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
The above snippet of code generates channels of different types. It produces the following output.
>> buffer_manager_test_multiple_types
buffer_manager_test_multiple_types =
struct with fields:
description_list: {[1Γ0 char]}
yarp_robot_name: [1Γ0 char]
struct_channel: [1Γ1 struct]
vector_channel: [1Γ1 struct]
string_channel: [1Γ1 struct]
double_channel: [1Γ1 struct]
int_channel: [1Γ1 struct]
>> buffer_manager_test_multiple_types.string_channel
ans =
struct with fields:
data: {1Γ3 cell}
dimensions: [1 3]
elements_names: {'element_0'}
units_of_measure: {'n.d.'}
name: 'string_channel'
timestamps: [1.6512e+09 1.6512e+09 1.6512e+09]
>> buffer_manager_test_multiple_types.vector_channel
ans =
struct with fields:
data: [4Γ1Γ3 double]
dimensions: [4 1 3]
elements_names: {4Γ1 cell}
units_of_measure: {'n.d.'}
name: 'vector_channel'
timestamps: [1.6512e+09 1.6512e+09 1.6512e+09]
BufferManager
can call an additional callback every time the save function is called. The
following example define a custom callback that saves a dummy txt
file along with the mat
saved
by the telemetry
bool myCallback(const std::string& file_name, const SaveCallbackSaveMethod& method) {
std::string file_name_with_extension = file_name + ".txt";
std::ofstream my_file(file_name_with_extension.c_str());
// Write to the file
my_file << "Dummy file!";
// Close the file
my_file.close();
return true;
};
robometry::BufferManager bm;
bm.setSaveCallback(myCallback);
It is possible to load the configuration of a BufferManager from a json file
robometry::BufferManager bm;
robometry::BufferConfig bufferConfig;
bool ok = bufferConfigFromJson(bufferConfig,"test_json.json");
ok = ok && bm.configure(bufferConfig);
Where the file has to have this format:
{
"yarp_robot_name": "robot",
"description_list": [
"This is a test",
"Or it isn't?"
],
"path":"/my/preferred/path",
"filename": "buffer_manager_test_conf_file",
"n_samples": 20,
"save_period": 1.0,
"data_threshold": 10,
"auto_save": true,
"save_periodically": true,
"channels": [
{
"dimensions": [1,1],
"elements_names": ["element_0"],
"name": "one",
"units_of_measure": ["meters"]
},
{
"dimensions": [1,1],
"elements_names": ["element_0"],
"name": "two",
"units_of_measure": ["degrees"]
}
],
"enable_compression": true,
"file_indexing": "%Y_%m_%d_%H_%M_%S",
"mat_file_version": "v7_3"
}
The configuration can be saved to a json file
robometry::BufferConfig bufferConfig;
bufferConfig.n_samples = 10;
bufferConfig.save_period = 0.1; //seconds
bufferConfig.data_threshold = 5;
bufferConfig.save_periodically = true;
std::vector<robometry::ChannelInfo> vars{ { "one",{2,3} },
{ "two",{3,2} } };
bufferConfig.channels = vars;
auto ok = bufferConfigToJson(bufferConfig, "test_json_write.json");
The telemetryDeviceDumper
is a yarp device that has to be launched through the yarprobotinterface
for dumping quantities from your robot(e.g. encoders, velocities etc.) in base of what specified in the configuration. It currently needs icub-main version equal or higher than 2.7.0
Specificially this is needed when enabling the parameter logIRawValuesPublisher
, which is used for dumping any type of raw data values coming from the low level, e.g. raw encoder data.
- Add
${CMAKE_INSTALL_PREFIX}/share/yarp
(where${CMAKE_INSTALL_PREFIX}
needs to be substituted to the directory that you choose as theCMAKE_INSTALL_PREFIX
) to yourYARP_DATA_DIRS
environment variable (for more on theYARP_DATA_DIRS
env variable, see YARP documentation on data directories ). - Once you do that, you should be able to find the
telemetryDeviceDumper
device compiled by this repo using the commandyarp plugin telemetryDeviceDumper
, which should have an output similar to:
Yes, this is a YARP plugin
* library: CMAKE_INSTALL_PREFIX/lib/yarp/yarp_telemetryDeviceDumper.dll
* system version: 5
* class name: robometry::TelemetryDeviceDumper
* base class: yarp::dev::DeviceDriver
If this is not the case, there could be some problems in finding the plugin. In that case, just move yourself to the ${CMAKE_INSTALL_PREFIX}/share/yarp
directory and launch the device from there.
Further documentation about the configuration parameters and the mapping of the variables inside the .mat file can be browsed here
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.