-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
350 lines (272 loc) · 13.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import gc
import io
import cv2
import sys
import PIL
import math
import lpips
import torch
import requests
import numpy as np
sys.path.append('./CLIP')
sys.path.append('./taming-transformers')
from os import path
from PIL import Image
from glob import glob
from CLIP import clip
from pathlib import Path
from IPython import display
from torch import nn, optim
from google.colab import output
from omegaconf import OmegaConf
from torchvision import transforms
from torch.nn import functional as F
from tqdm.notebook import tqdm, trange
from taming.models import cond_transformer, vqgan
from torchvision.transforms import functional as TF
def reduce_res(res, max_res_value=4.5e5, max_res_scale=1.): # max limit aprx 700x700 = 49e4
x1, y1 = res
if x1 * y1 < max_res_value:
return x1, y1
x = (max_res_value**(1/2)) / (x1/y1)**(1/2)
return int(max_res_scale*x1*x/y1), int(max_res_scale*x)
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
class ClampWithGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
@staticmethod
def backward(ctx, grad_in):
input, = ctx.saved_tensors
return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
def vector_quantize(x, codebook):
d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
return replace_grad(x_q, x)
clamp_with_grad = ClampWithGrad.apply
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
def parse_prompt(prompt):
if prompt.startswith('http://') or prompt.startswith('https://'):
vals = prompt.rsplit(':', 3)
vals = [vals[0] + ':' + vals[1], *vals[2:]]
else:
vals = prompt.rsplit(':', 2)
vals = vals + ['', '1', '-inf'][len(vals):]
return vals[0], float(vals[1]), float(vals[2])
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
return clamp_with_grad(torch.cat(cutouts, dim=0), 0, 1)
def resize_image(image, out_size):
ratio = image.size[0] / image.size[1]
area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
size = round((area * ratio)**0.5), round((area / ratio)**0.5)
return image.resize(size, Image.LANCZOS)
def save_img(a, dir):
PIL.Image.fromarray(np.uint8(np.clip(a, 0, 255))).save(dir)
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
if config.model.target == 'taming.models.vqgan.VQModel':
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
parent_model.eval().requires_grad_(False)
parent_model.init_from_ckpt(checkpoint_path)
model = parent_model.first_stage_model
else:
raise ValueError(f'unknown model type: {config.model.target}')
del model.loss
return model
class Network(torch.nn.Module):
def __init__(self):
super().__init__()
class Preprocess(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, tenInput):
tenBlue = (tenInput[:, 0:1, :, :] - 0.406) / 0.225
tenGreen = (tenInput[:, 1:2, :, :] - 0.456) / 0.224
tenRed = (tenInput[:, 2:3, :, :] - 0.485) / 0.229
return torch.cat([ tenRed, tenGreen, tenBlue ], 1)
class Basic(torch.nn.Module):
def __init__(self, intLevel):
super().__init__()
self.netBasic = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3)
)
def forward(self, tenInput):
return self.netBasic(tenInput)
self.netPreprocess = Preprocess()
self.netBasic = torch.nn.ModuleList([ Basic(intLevel) for intLevel in range(6) ])
self.load_state_dict({ strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.hub.load_state_dict_from_url(url='http://content.sniklaus.com/github/pytorch-spynet/network-' + arguments_strModel + '.pytorch', file_name='spynet-' + arguments_strModel).items() })
def forward(self, tenOne, tenTwo):
tenFlow = []
tenOne = [ self.netPreprocess(tenOne) ]
tenTwo = [ self.netPreprocess(tenTwo) ]
for intLevel in range(5):
if tenOne[0].shape[2] > 32 or tenOne[0].shape[3] > 32:
tenOne.insert(0, torch.nn.functional.avg_pool2d(input=tenOne[0], kernel_size=2, stride=2, count_include_pad=False))
tenTwo.insert(0, torch.nn.functional.avg_pool2d(input=tenTwo[0], kernel_size=2, stride=2, count_include_pad=False))
tenFlow = tenOne[0].new_zeros([ tenOne[0].shape[0], 2, int(math.floor(tenOne[0].shape[2] / 2.0)), int(math.floor(tenOne[0].shape[3] / 2.0)) ])
for intLevel in range(len(tenOne)):
tenUpsampled = torch.nn.functional.interpolate(input=tenFlow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0
if tenUpsampled.shape[2] != tenOne[intLevel].shape[2]: tenUpsampled = torch.nn.functional.pad(input=tenUpsampled, pad=[ 0, 0, 0, 1 ], mode='replicate')
if tenUpsampled.shape[3] != tenOne[intLevel].shape[3]: tenUpsampled = torch.nn.functional.pad(input=tenUpsampled, pad=[ 0, 1, 0, 0 ], mode='replicate')
tenFlow = self.netBasic[intLevel](torch.cat([ tenOne[intLevel], backwarp(tenInput=tenTwo[intLevel], tenFlow=tenUpsampled), tenUpsampled ], 1)) + tenUpsampled
return tenFlow
torch.backends.cudnn.enabled = True
arguments_strModel = 'sintel-final' # 'sintel-final', or 'sintel-clean', or 'chairs-final', or 'chairs-clean', or 'kitti-final'
backwarp_tenGrid = {}
def backwarp(tenInput, tenFlow):
if str(tenFlow.shape) not in backwarp_tenGrid:
tenHor = torch.linspace(-1.0 + (1.0 / tenFlow.shape[3]), 1.0 - (1.0 / tenFlow.shape[3]), tenFlow.shape[3]).view(1, 1, 1, -1).expand(-1, -1, tenFlow.shape[2], -1)
tenVer = torch.linspace(-1.0 + (1.0 / tenFlow.shape[2]), 1.0 - (1.0 / tenFlow.shape[2]), tenFlow.shape[2]).view(1, 1, -1, 1).expand(-1, -1, -1, tenFlow.shape[3])
backwarp_tenGrid[str(tenFlow.shape)] = torch.cat([ tenHor, tenVer ], 1).cuda()
tenFlow = torch.cat([ tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0) ], 1)
return torch.nn.functional.grid_sample(input=tenInput, grid=(backwarp_tenGrid[str(tenFlow.shape)] + tenFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='border', align_corners=False)
netNetwork = None
def estimate(tenOne, tenTwo):
global netNetwork
if netNetwork is None:
netNetwork = Network().cuda().eval()
assert(tenOne.shape[1] == tenTwo.shape[1])
assert(tenOne.shape[2] == tenTwo.shape[2])
intWidth = tenOne.shape[2]
intHeight = tenOne.shape[1]
tenPreprocessedOne = tenOne.cuda().view(1, 3, intHeight, intWidth)
tenPreprocessedTwo = tenTwo.cuda().view(1, 3, intHeight, intWidth)
intPreprocessedWidth = int(math.floor(math.ceil(intWidth / 32.0) * 32.0))
intPreprocessedHeight = int(math.floor(math.ceil(intHeight / 32.0) * 32.0))
tenPreprocessedOne = torch.nn.functional.interpolate(input=tenPreprocessedOne, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False)
tenPreprocessedTwo = torch.nn.functional.interpolate(input=tenPreprocessedTwo, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False)
tenFlow = torch.nn.functional.interpolate(input=netNetwork(tenPreprocessedOne, tenPreprocessedTwo), size=(intHeight, intWidth), mode='bilinear', align_corners=False)
tenFlow[:, 0, :, :] *= float(intWidth) / float(intPreprocessedWidth)
tenFlow[:, 1, :, :] *= float(intHeight) / float(intPreprocessedHeight)
return tenFlow[0, :, :, :].cpu()
def calc_opflow(img1, img2):
img1 = PIL.Image.fromarray(img1)
img2 = PIL.Image.fromarray(img2)
tenFirst = torch.FloatTensor(
np.ascontiguousarray(
np.array(img1)[:, :, ::-1].transpose(2, 0, 1).astype(np.float32)
* (1.0 / 255.0)
)
)
tenSecond = torch.FloatTensor(
np.ascontiguousarray(
np.array(img2)[:, :, ::-1].transpose(2, 0, 1).astype(np.float32)
* (1.0 / 255.0)
)
)
tenOutput = estimate(tenFirst, tenSecond)
return tenOutput
def get_opflow_image(np_prev_img, frame, np_img, blendflow, blendstatic, threshold=6, do_blur=True, blur_value=(5, 5)):
np_prev_img = np.float32(np_prev_img)
frame = np.float32(frame)
np_img = np.float32(np_img)
h, w, _ = np_prev_img.shape
flow = calc_opflow(np.uint8(np_prev_img), np.uint8(np_img))
flow = np.transpose(np.float32(flow), (1, 2, 0))
inv_flow = flow
flow = -flow
flow[:, :, 0] += np.arange(w)
flow[:, :, 1] += np.arange(h)[:, np.newaxis]
framediff = (np_img*(1-blendflow) + frame*blendflow) - np_prev_img
framediff = cv2.remap(framediff, flow, None, cv2.INTER_LINEAR)
if do_blur:
framediff = cv2.GaussianBlur(framediff, blur_value, 0)
frame_flow = np_img + framediff
magnitude, _ = cv2.cartToPolar(inv_flow[...,0], inv_flow[...,1])
norm_mag = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX)
_, mask = cv2.threshold(norm_mag, threshold, 255, cv2.THRESH_BINARY)
flow_mask = mask.astype(np.uint8).reshape((h, w, 1))
frame_flow_masked = cv2.bitwise_and(frame_flow, frame_flow, mask=flow_mask)
background_blendimg = cv2.addWeighted(np_img, (1-blendstatic), frame, blendstatic, 0)
background_masked = cv2.bitwise_and(background_blendimg, background_blendimg, mask=cv2.bitwise_not(flow_mask))
return frame_flow_masked, background_masked