-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_classification_dynamic.py
518 lines (469 loc) · 25.3 KB
/
train_classification_dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import os
import sys
import torch
import numpy as np
import random
import math
import datetime
import logging
import provider
import importlib
import shutil
import argparse
# from torch.utils.data import TensorDataset, DataLoader
from pathlib import Path
from tqdm import tqdm
from data_utils.ModelNetDataLoader import ModelNetDataLoader
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
def pc_normalize(pc):
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
def parse_args():
'''PARAMETERS'''
parser = argparse.ArgumentParser('training')
parser.add_argument('--use_cpu', action='store_true', default=False, help='use cpu mode')
parser.add_argument('--gpu', type=str, default='0', help='specify gpu device')
parser.add_argument('--batch_size', type=int, default=24, help='batch size in training')
parser.add_argument('--num_category', default=40, type=int, choices=[10, 40], help='training on ModelNet10/40')
parser.add_argument('--epoch', default=10, type=int, help='number of epoch in training')
parser.add_argument('--inner_epoch', default=200, type=int, help='number of epoch in inner training')
parser.add_argument('--learning_rate', default=0.001, type=float, help='learning rate in training')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number')
parser.add_argument('--optimizer', type=str, default='Adam', help='optimizer for training')
parser.add_argument('--log_dir', type=str, default=None, help='experiment root')
parser.add_argument('--decay_rate', type=float, default=1e-4, help='decay rate')
parser.add_argument('--use_normals', action='store_true', default=False, help='use normals')
parser.add_argument('--process_data', action='store_true', default=False, help='save data offline')
parser.add_argument('--use_uniform_sample', action='store_true', default=False, help='use uniform sampiling')
parser.add_argument('--use_assemble', action='store_true', default=False, help='use assemble training')
parser.add_argument('--angles', type=float, default=None, help='random rotation bound')
parser.add_argument('--scales', type=float, default=None, help='random scale bound')
parser.add_argument('--use_pretrained', action='store_true', default=False, help='use assemble training')
parser.add_argument('--step_size', default=0.01, type=float, help='attack step size')
parser.add_argument('--iters', default=0, type=int, help='attack steps')
parser.add_argument('--aw', action='store_true', default=False, help='axis wise attack')
parser.add_argument('--rp', action='store_true', default=False, help='rotation pool')
return parser.parse_args()
def inplace_relu(m):
classname = m.__class__.__name__
if classname.find('ReLU') != -1:
m.inplace=True
def test(classifier, loader, rotation_pool, num_class):
args = parse_args()
mean_correct = []
class_acc = np.zeros((num_class, 3))
for j, (points, target) in tqdm(enumerate(loader), total=len(loader)):
points = points.data.numpy()
# points = provider.random_point_dropout(points)
# points[:, :, 0:3] = provider.random_scale_point_cloud(points[:, :, 0:3])
# points[:, :, 0:3] = provider.shift_point_cloud(points[:, :, 0:3])
# points[:, :, 0:3], _ = provider.random_sr_point_cloud(points[:, :, 0:3])
if not args.rp:
points, _ = provider.random_rotate_point_cloud(points, args.angles)
else:
print('use rp')
sample_i = 0
for category in target:
rotate = random.sample(rotation_pool[category.item()], 1)[0]
R = provider.generate_a_rotate_matrix(rotate)
points[sample_i, :, 0:3] = np.dot(points[sample_i, :, 0:3], R)
sample_i += 1
points = torch.from_numpy(points)
if not args.use_cpu:
points, target = points.cuda(), target.cuda()
pred, _ = classifier(points.transpose(2, 1))
pred_choice = pred.data.max(1)[1]
for cat in np.unique(target.cpu()):
classacc = pred_choice[target == cat].eq(target[target == cat].long().data).cpu().sum()
class_acc[cat, 0] += classacc.item() / float(points[target == cat].size()[0])
class_acc[cat, 1] += 1
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item() / float(points.size()[0]))
class_acc[:, 2] = class_acc[:, 0] / class_acc[:, 1]
class_acc = np.mean(class_acc[:, 2])
instance_acc = np.mean(mean_correct)
return instance_acc, class_acc
class CWFGSM(object):
def __init__(self, iters, step_size, angles, ax_wise=False):
self.iters = iters
self.angles = angles
# self.scales = args.scales
self.step_size = step_size
self.ax_wise = ax_wise
def forward(self, target_cls, points, labels):
B = points.shape[0]
iters = self.iters
step_size = self.step_size
if not self.ax_wise:
# points = points.data.cpu().numpy()
trans = self.angles * (2 * np.random.rand(3, B) - 1)
# trans1 = copy.deepcopy(trans)
# points = torch.from_numpy(points)
# points = torch.from_numpy(points.data.cpu().numpy())
points_adv = points.detach().clone()
delta = torch.from_numpy(trans)
delta.requires_grad = True
optimizer = torch.optim.Adam([delta], lr=step_size)
for i in range(iters):
with torch.no_grad():
delta.clamp_(-self.angles, self.angles)
for j in range(B):
r_angles = delta[:, j] * math.pi
c0, c1, c2 = torch.cos(r_angles[0]), torch.cos(r_angles[1]), torch.cos(r_angles[2])
s0, s1, s2 = torch.sin(r_angles[0]), torch.sin(r_angles[1]), torch.sin(r_angles[2])
f1, f2, f3 = c2 * c1, c2 * s1 * s0 - s2 * c0, c2 * s1 * c0 + s2 * s0
f4, f5, f6 = s2 * c1, s2 * s1 * s0 + c2 * c0, s2 * s1 * c0 - c2 * s0
f7, f8, f9 = -s1, c1 * s0, c0 * c1
points_adv[j, :, 0] = f1 * points[j, :, 0] + f4 * points[j, :, 1] + f7 * points[j, :, 2]
points_adv[j, :, 1] = f2 * points[j, :, 0] + f5 * points[j, :, 1] + f8 * points[j, :, 2]
points_adv[j, :, 2] = f3 * points[j, :, 0] + f6 * points[j, :, 1] + f9 * points[j, :, 2]
points_adv = points_adv.cuda()
outputs, trans_feat = target_cls(points_adv.permute(0, 2, 1))
# loss = criterion(outputs, labels.long(), trans_feat)
loss = torch.sum(self._f(outputs, labels.long()))
# print(loss)
# print(loss, i)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
# with torch.no_grad():
# delta.clamp_(-self.angles, self.angles)
# print(delta)
adversarial_examples = points_adv
delta = delta.detach().numpy()
else:
trans = self.angles * (2 * np.random.rand(3, B) - 1)
points_adv = points.detach().clone()
delta1 = torch.from_numpy(trans[0])
delta2 = torch.from_numpy(trans[1])
delta3 = torch.from_numpy(trans[2])
delta1 = delta1.cuda()
delta2 = delta2.cuda()
delta3 = delta3.cuda()
delta1.requires_grad = True
delta2.requires_grad = True
delta3.requires_grad = True
optimizer1 = torch.optim.Adam([delta1], lr=step_size)
optimizer2 = torch.optim.Adam([delta2], lr=step_size)
optimizer3 = torch.optim.Adam([delta3], lr=step_size)
for i in range(iters):
with torch.no_grad():
delta1.clamp_(-self.angles, self.angles)
delta2.clamp_(-self.angles, self.angles)
delta3.clamp_(-self.angles, self.angles)
c0, c1, c2 = torch.cos(delta1 * math.pi), torch.cos(delta2 * math.pi), torch.cos(delta3 * math.pi)
s0, s1, s2 = torch.sin(delta1 * math.pi), torch.sin(delta2 * math.pi), torch.sin(delta3 * math.pi)
f1, f2, f3 = c2 * c1, c2 * s1 * s0 - s2 * c0, c2 * s1 * c0 + s2 * s0
f4, f5, f6 = s2 * c1, s2 * s1 * s0 + c2 * c0, s2 * s1 * c0 - c2 * s0
f7, f8, f9 = -s1, c1 * s0, c0 * c1
# print(points_adv[0, :, 0], f1, points[0, :, 0])
points_adv[0, :, 0] = f1 * points[0, :, 0] + f4 * points[0, :, 1] + f7 * points[0, :, 2]
points_adv[0, :, 1] = f2 * points[0, :, 0] + f5 * points[0, :, 1] + f8 * points[0, :, 2]
points_adv[0, :, 2] = f3 * points[0, :, 0] + f6 * points[0, :, 1] + f9 * points[0, :, 2]
points_adv = points_adv.cuda()
points_adv_t = points_adv.permute(0, 2, 1)
outputs, trans_feat = target_cls(points_adv_t)
loss = torch.sum(self._f(outputs, labels.long()))
gradients = torch.autograd.grad(loss, points_adv_t, retain_graph=True)[0]
gradients = gradients.permute(0, 2, 1)
delta_x, x = gradients[:, :, 0], points_adv[:, :, 0]
delta_y, y = gradients[:, :, 1], points_adv[:, :, 1]
delta_z, z = gradients[:, :, 2], points_adv[:, :, 2]
# 1. angles along three axis
Lphi_x = torch.sum((-z) * delta_y + y * delta_z, dim=1)
Lphi_y = torch.sum((-x) * delta_z + z * delta_x, dim=1)
Lphi_z = torch.sum((-y) * delta_x + x * delta_y, dim=1)
Lphi = torch.cat([Lphi_x.view(B, 1), Lphi_y.view(B, 1), Lphi_z.view(B, 1)], dim=1)
max_axis_id = torch.argmax(torch.abs(Lphi), dim=1)
if max_axis_id[0] == 0:
optimizer1.zero_grad()
loss.backward(retain_graph=True)
optimizer1.step()
elif max_axis_id[0] == 1:
optimizer2.zero_grad()
loss.backward(retain_graph=True)
optimizer2.step()
else:
optimizer3.zero_grad()
loss.backward(retain_graph=True)
optimizer3.step()
adversarial_examples = points_adv
delta = torch.cat([delta1, delta2, delta3])
delta = delta.detach().cpu().numpy()
return adversarial_examples, delta
def _f(self, outputs, labels):
# sm = torch.nn.Softmax(dim=1)
# outputs = -torch.log(sm(outputs))
outputs = -outputs
y_onehot = torch.zeros_like(outputs).scatter(1, labels.view(-1, 1), 1)
real = (y_onehot * outputs).sum(dim=1)
other, _ = torch.max((1 - y_onehot) * outputs, dim=1)
loss = other - real
return loss
def main(args):
def log_string(str):
logger.info(str)
print(str)
'''CREATE DIR'''
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))
exp_dir = Path('./log/')
exp_dir.mkdir(exist_ok=True)
exp_dir = exp_dir.joinpath('classification')
exp_dir.mkdir(exist_ok=True)
if args.log_dir is None:
exp_dir = exp_dir.joinpath(timestr)
else:
exp_dir = exp_dir.joinpath(args.log_dir)
exp_dir.mkdir(exist_ok=True)
checkpoints_dir = exp_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
log_dir = exp_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
'''LOG'''
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/pointnet_cls.txt' % (log_dir))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
'''DATA LOADING'''
log_string('Load dataset ...')
# data_path = '../../../data/modelnet40_normal_resampled/'
# train_dataset = ModelNetDataLoader(root=data_path, npoints=1024, num_category=40, split='train')
# test_dataset = ModelNetDataLoader(root=data_path, npoints=1024, num_category=40, split='test')
# trainDataLoader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=False,
# num_workers=16, drop_last=True)
# testDataLoader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False,
# num_workers=16)
# new data_sets!!!!
train_points = np.load('train1024point.npy')
train_labels = np.load('train1024label.npy').flatten()
print('train data size:', train_labels.shape)
test_points = np.load('test1024point.npy')
test_labels = np.load('test1024label.npy').flatten()
print('test data size:', test_labels.shape)
train_dataset = torch.utils.data.TensorDataset(torch.from_numpy(train_points), torch.from_numpy(train_labels))
test_dataset = torch.utils.data.TensorDataset(torch.from_numpy(test_points), torch.from_numpy(test_labels))
# train_dataset = torch.utils.data.TensorDataset(torch.from_numpy(train_points[0:50, :, :]), torch.from_numpy(train_labels[0:50]))
# test_dataset = torch.utils.data.TensorDataset(torch.from_numpy(test_points), torch.from_numpy(test_labels))
trainDataLoader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=16, drop_last=True)
testDataLoader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=16)
'''MODEL LOADING'''
num_class = args.num_category
model = importlib.import_module('pointnet_cls')
# shutil.copy('../methods/cwfgsm.py', str(exp_dir))
shutil.copy('train_classification_dynamic.py', str(exp_dir))
shutil.copy('provider.py', str(exp_dir))
print("Let's use", torch.cuda.device_count(), "GPUs!")
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
# 1 for eval, 2 for train
if not args.use_cpu:
classifier_eval = model.get_model(num_class, normal_channel=args.use_normals)
classifier_train = model.get_model(num_class, normal_channel=args.use_normals)
classifier_eval = classifier_eval.cuda()
classifier_train = classifier_train.cuda()
criterion = model.get_loss()
criterion = criterion.cuda()
else:
classifier_eval = model.get_model(num_class, normal_channel=args.use_normals)
classifier_train = model.get_model(num_class, normal_channel=args.use_normals)
criterion = model.get_loss()
classifier_eval.apply(inplace_relu)
classifier_train.apply(inplace_relu)
pretrained_dir = Path('./pretrained_models/modelnet40/pn1.pth')
checkpoint_pre = torch.load(pretrained_dir)
# start_epoch = checkpoint['epoch']
classifier_eval.load_state_dict(checkpoint_pre['model_state_dict'])
classifier_train.load_state_dict(checkpoint_pre['model_state_dict'])
log_string('Use pretrain model')
# except:
# log_string('No existing model, starting training from scratch...')
start_epoch = 0
global_epoch = 0
global_step = 0
best_instance_acc = 0.0
best_class_acc = 0.0
attack = CWFGSM(args.iters, args.step_size, args.angles, args.aw)
'''TRANING'''
logger.info('Start training...')
if args.angles:
print('rotate data with %.2f' % args.angles)
if args.scales:
print('scale data with %.2f' % args.scales)
for epoch in range(start_epoch, args.epoch):
log_string('Epoch %d (%d/%s):' % (global_epoch + 1, epoch + 1, args.epoch))
adv_samples = []
adv_labels = []
rotation_pool = {}
attack_num = 0
attack_correct = 0
log_string('eval:{}'.format(classifier_eval.state_dict()['fc1.weight']))
log_string('train:{}'.format(classifier_train.state_dict()['fc1.weight']))
if epoch > 0:
modelsavepath = str(checkpoints_dir) + '/best_model.pth'
checkpoint = torch.load(modelsavepath)
classifier_eval.load_state_dict(checkpoint['model_state_dict'])
classifier_train.load_state_dict(checkpoint['model_state_dict'])
log_string('eval:{}'.format(classifier_eval.state_dict()['fc1.weight']))
log_string('train:{}'.format(classifier_train.state_dict()['fc1.weight']))
classifier_train = classifier_train.train()
# max to find most aggressive
log_string('Max Step to Find Most Aggressive')
for batch_id_max, (points, target) in tqdm(enumerate(trainDataLoader, 0), total=len(trainDataLoader), smoothing=0.9):
# print(points.shape, target.shape)
if not args.use_cpu:
points, target = points.cuda(), target.cuda()
adv_points, trans = attack.forward(classifier_eval.eval(), points, target)
if not args.rp:
adv_samples.append(adv_points)
adv_labels.append(target)
else:
sample_i = 0
for category in target.data.cpu().numpy():
# category = str(category)
# print(category)
if category in rotation_pool:
# print(rotation_pool)
# print(rotation_pool[category])
rotation_pool[category].append(trans[:, sample_i])
# all_trans_start[label].append(trans_start[:, sample_i])
else:
rotation_pool[category] = [trans[:, sample_i]]
sample_i += 1
# outputs, _ = classifier_eval(adv_points.permute(0, 2, 1))
# adv_samples.append(adv_points)
# adv_labels.append(target)
outputs, _ = classifier_eval(adv_points.permute(0, 2, 1))
# points = points.permute(0,2,1)
# outputs, _ = self.target_cls(points)
pred_choice = outputs.data.max(1)[1]
correct_num = pred_choice.eq(target.long().data).cpu().sum()
# _, predicted = torch.max(outputs, 1)
attack_correct += correct_num
attack_num += target.size(0)
acc = attack_correct / float(attack_num)
log_string('Acc after Attack: %.4f' % acc)
# # log_string('Acc after Attack: %.4f' % acc)
# adv_samples = torch.cat(adv_samples).data.cpu().numpy()
# adv_labels = torch.cat(adv_labels).data.cpu().numpy()
if not args.rp:
adv_samples = torch.cat(adv_samples).data.cpu().numpy()
adv_labels = torch.cat(adv_labels).data.cpu().numpy()
print(adv_samples.shape, adv_labels.shape)
log_string(True in np.isnan(adv_samples))
log_string(True in np.isnan(adv_labels))
adv_dataset = torch.utils.data.TensorDataset(torch.from_numpy(adv_samples),
torch.from_numpy(adv_labels)) # create your datset
adv_dataloader = torch.utils.data.DataLoader(adv_dataset, batch_size=17,
shuffle=True) # create your dataloader
logger.info('End of Min Step......')
else:
# for ts in rotation_pool.values():
# print(len(ts))
# for t in ts:
# log_string(True in np.isnan(t))
adv_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=17, shuffle=True,
num_workers=16, drop_last=True)
# print(adv_samples.shape, adv_labels.shape)
# log_string(True in np.isnan(adv_samples))
# log_string(True in np.isnan(adv_labels))
# adv_dataset = torch.utils.data.TensorDataset(torch.from_numpy(adv_samples), torch.from_numpy(adv_labels)) # create your datset
# adv_dataloader = torch.utils.data.DataLoader(adv_dataset, batch_size=17, shuffle=True) # create your dataloader
# logger.info('End of Min Step......')
# min steps
log_string('Min Step to Optimize on Most Aggressive')
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
classifier_train.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.decay_rate
)
else:
optimizer = torch.optim.SGD(classifier_train.parameters(), lr=0.01, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.8)
log_string('begin optim: {}'.format(optimizer.param_groups[0]['lr']))
for epoch_adv in range(args.inner_epoch):
log_string('Epoch %d (%d/%s):' % (epoch_adv + 1, epoch_adv + 1, args.inner_epoch))
mean_correct = []
for batch_id_min, (points_adv, target_adv) in tqdm(enumerate(adv_dataloader, 0), total=len(adv_dataloader),
smoothing=0.9):
if not args.use_cpu:
points_adv, target_adv = points_adv.cuda(), target_adv.cuda()
if not args.rp:
pred, trans_feat = classifier_train(points_adv.transpose(2, 1))
else:
points_adv = points_adv.data.cpu().numpy()
sample_i = 0
for category in target_adv:
rotate = random.sample(rotation_pool[category.item()], 1)[0]
R = provider.generate_a_rotate_matrix(rotate)
points_adv[sample_i, :, 0:3] = np.dot(points_adv[sample_i, :, 0:3], R)
sample_i += 1
#print(sample_i)
points_adv = torch.from_numpy(points_adv)
points_adv = points_adv.cuda()
pred, trans_feat = classifier_train(points_adv.transpose(2, 1))
# pred, trans_feat = classifier_train(points_adv.transpose(2, 1))
# log_string('cloud:{}'.format(points_adv))
# log_string('target:{}'.format(target_adv))
loss = criterion(pred, target_adv.long(), trans_feat)
# log_string('loss:{}'.format(loss))
pred_choice = pred.data.max(1)[1]
correct = pred_choice.eq(target_adv.long().data).cpu().sum()
mean_correct.append(correct.item() / float(points_adv.size()[0]))
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_step += 1
scheduler.step()
log_string('{} {} optim: {}'.format(epoch, epoch_adv, optimizer.param_groups[0]['lr']))
train_instance_acc = np.mean(mean_correct)
log_string('Train Instance Accuracy: %f' % train_instance_acc)
test_acc_mean_ins = []
test_acc_mean_cls = []
for i in range(1):
instance_acc_single, class_acc_single = test(classifier_train.eval(), testDataLoader,
rotation_pool, num_class=num_class)
log_string(
'Current index %d, Test Instance Accuracy: %f, Class Accuracy: %f' % (
i, instance_acc_single, class_acc_single))
test_acc_mean_ins.append(instance_acc_single)
test_acc_mean_cls.append(class_acc_single)
instance_acc = np.mean(test_acc_mean_ins)
class_acc = np.mean(test_acc_mean_cls)
if (class_acc >= best_class_acc):
best_class_acc = class_acc
if (instance_acc >= best_instance_acc):
best_instance_acc = instance_acc
best_epoch = epoch_adv + 1
logger.info('Save model...')
savepath = str(checkpoints_dir) + '/best_model.pth'
log_string('Saving at %s' % savepath)
state = {
'epoch': best_epoch,
'instance_acc': instance_acc,
'class_acc': class_acc,
'model_state_dict': classifier_train.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
log_string('Test Instance Accuracy: %f, Class Accuracy: %f' % (instance_acc, class_acc))
log_string('Best Instance Accuracy: %f, Class Accuracy: %f' % (best_instance_acc, best_class_acc))
global_epoch += 1
logger.info('End of Max Step %d...' % epoch)
if __name__ == '__main__':
args = parse_args()
main(args)
# path = '../../../data/modelnet40_normal_resampled/modelnet40_train_1024pts.dat'