-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathKsim.m
266 lines (235 loc) · 12.7 KB
/
Ksim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
classdef Ksim
%mpcsim: Class for performing simulations of fake systems
% Build from a system class (like arm) and an mpc class
properties
sys;
mpc;
scaledown; % for scaling data into range [-1 , 1]
scaleup; % for unscaling data from range [-1 , 1]
ref; % reference trajectory
shape; % reference point or trajectory of shape parameters (for arm system only)
end
methods
function obj = Ksim( system_class , mpc_class , varargin )
%CLASS CONSTRUCTOR
% Detailed explanation goes here
obj.sys = system_class; % hold onto entire class
obj.mpc = mpc_class; % hold onto entire class
% copy the scaling functions for easier access
obj.scaledown = mpc_class.scaledown;
obj.scaleup = mpc_class.scaleup;
% obj = obj.get_refscale; % get the scale matrix for reference traj.
% set default values of optional inputs
ref = [];
shape = [];
% replace default values with user input values
obj = obj.parse_args( varargin{:} );
end
% parse_args: Parses the Name, Value pairs in varargin
function obj = parse_args( obj , varargin )
%parse_args: Parses the Name, Value pairs in varargin of the
% constructor, and assigns property values
for idx = 1:2:length(varargin)
obj.(varargin{idx}) = varargin{idx+1} ;
end
end
%% Simulate the system with mpc controller
% run_trial_mpc: Runs a simulation of system under linear mpc controller
function results = run_trial_mpc( obj , ref , x0 , u0 , load_value )
%run_trial: Runs a simulation of system under mpc controller.
% Tries to follow the trajectory in ref and impose the
% shape constraints in shape_bounds.
% Assume ref and shape_bounds have same sampling frequency as
% sytem, and that they are already scaled to be consistent
% with the lifted model.
% ref - each row is a desired point at the corresponding timestep
% x0 - [1,nx] initial condtion
% u0 - [1,nu] initial input
% load - [1,nw] or [total steps,nw] load condition for trial
% shorthand
nd = obj.mpc.params.nd;
Np = obj.mpc.horizon;
% set initial state value
if isempty(x0)
x0 = zeros( nd+1 , obj.sys.params.nx );
else
x0 = kron( ones( nd+1 , 1 ) , x0 );
end
% set initial state value
if isempty(u0)
u0 = zeros( nd+1 , obj.sys.params.nu );
else
u0 = kron( ones( nd+1 , 1 ) , u0 );
end
y0 = obj.sys.get_y( x0 ); % initial output
% set value for loading condition
if obj.mpc.loaded
if nargin < 5
error('Missing argument: The model expects a load condition but none was provided');
else
if size( load_value , 2 ) ~= obj.sys.params.nw
error(['Load argument should have ' , obj.sys.params.nw , ' columns, not ' , size( load_value , 2) ]);
end
if isempty(load_value)
w = zeros( size(ref,1) , obj.sys.params.nw );
elseif size( load_value , 1 ) == 1 % assume constant load
w = kron( ones( size(ref,1) , 1 ) , load_value );
elseif size( load_value , 1 ) ~= size( ref , 1 )
error('Load argument must have 1 or the same number of rows as ref argument');
else
w = load_value;
end
end
elseif exist( 'load_value' , 'var' ) % model doesn't have load, but I want to apply one to actual system
if size( load_value , 1 ) == 1 % assume constant load
w = kron( ones( size(ref,1) , 1 ) , load_value );
elseif size( load_value , 1 ) ~= size( ref , 1 )
error('Load argument must have 1 or the same number of rows as ref argument');
else
w = load_value;
end
end
% % set value of initial conditions to zero if none provided
% if nargin < 3
% x0 = zeros( nd+1 , obj.sys.params.nx );
% u0 = zeros( nd+1 , obj.sys.params.nu );
% elseif nargin < 4
% x0 = kron( ones( nd+1 , 1 ) , x0 );
% u0 = zeros( nd+1 , obj.sys.params.nu );
% else
% x0 = kron( ones( nd+1 , 1 ) , x0 );
% u0 = kron( ones( nd+1 , 1 ) , u0 );
% end
% y0 = obj.sys.get_y( x0 );
% resample and scale the reference trajectory (TODO: FIX THIS AND THE REFERENCE TRAJECTORY FORMAT)
% ref_Ts = obj.resample_ref( ref );
% ref_sc = obj.scaledown.y( ref_Ts );
ref_sc = obj.scaledown.ref( ref );
% set initial condition
initial.y = obj.scaledown.y(y0);
initial.u = obj.scaledown.u(u0);
[ initial , zeta0 ] = obj.mpc.get_zeta( initial ); % LINE NOT NEEDED
% initialize results struct
results = struct;
results.T = [ 0 ];
results.U = [ u0( end , : ) ];
results.Y = [ y0( end , : ) ];
results.K = [ 0 ];
results.R = [ ref(1,:) ];
results.X = [ x0( end , : ) ];
results.Z = []; %[ obj.mpc.lift.econ_full( zeta0' )' ]; % lifted states
results.comp_time = []; % mpc computation time
results.err = []; % tracking error (Euclidean distance)
if obj.mpc.loaded
results.W = w; % actual load condition over entire horizon
results.What = [ zeros( 1 , size(w,2) ) ]; % estimated load condition
elseif exist( 'load_value' , 'var' )
results.W = w; % actual load condition over entire horizon
end
k = 1;
while k < size( ref_sc , 1 )
% current time
t = k * obj.mpc.params.Ts;
% get current state and input with delays
if k == 1
current.y = obj.scaledown.y( y0 );
current.u = obj.scaledown.u( u0 );
elseif k < nd + 1
y = [ y0( k : end-1 , : ) ; results.Y ];
u = [ u0( k : end-1 , : ) ; results.U ];
current.y = obj.scaledown.y( y );
current.u = obj.scaledown.u( u );
else
y = results.Y( end - nd : end , : );
u = results.U( end - nd : end , : );
current.y = obj.scaledown.y( y );
current.u = obj.scaledown.u( u );
end
% get current estimate of the load condtion (if applicable)
if obj.mpc.loaded
if k < nd + 2
ypast = kron( ones(nd+2,1) , obj.scaledown.y( y0 ) ); % minimum size is nd+2
upast = kron( ones(nd+2,1) , obj.scaledown.u( u0 ) ); % minimum size is nd+2
elseif k < obj.mpc.load_obs_horizon + 1
yp = [ y0( k : end-1 , : ) ; results.Y ];
up = [ u0( k : end-1 , : ) ; results.U ];
ypast = obj.scaledown.y( yp );
upast = obj.scaledown.u( up );
else
yp = results.Y( end - obj.mpc.load_obs_horizon : end , : );
up = results.U( end - obj.mpc.load_obs_horizon : end , : );
ypast = obj.scaledown.y( yp );
upast = obj.scaledown.u( up );
end
% choose appropriate estimation function for model type
if mod( k , obj.mpc.load_obs_period ) == 0
if strcmp( obj.mpc.model_type , 'linear' )
current.what = obj.mpc.estimate_load_linear( ypast , upast)'; % NOTE!!!!: Only works no delays for now
elseif strcmp( obj.mpc.model_type , 'bilinear' ) && strcmp( obj.mpc.mpc_type , 'linear' )
current.what = obj.mpc.estimate_load_bilinear( ypast , upast)';
end
else
current.what = obj.scaledown.w( results.What(end,:) );
end
results.What = [ results.What ; obj.scaleup.w( current.what ) ]; % update results struct
end
% isolate the reference trajectory over the horizon
if k + Np <= size( ref_sc , 1 )
refhor = ref_sc( k : k + Np , :);
else
refhor = ref_sc( k : end , : ); % repeat last entry
end
% get optimal input over horizon
tic
if strcmp( obj.mpc.model_type , 'linear' )
[ U , z ] = obj.mpc.get_mpcInput( current , refhor );
elseif strcmp( obj.mpc.model_type , 'bilinear' ) && strcmp( obj.mpc.mpc_type , 'linear' )
% [ U , z ] = obj.mpc.get_mpcInput_bilinear( current , refhor );
[ U , z ] = obj.mpc.get_mpcInput_bilinear_iter( current , refhor , 1 );
elseif strcmp( obj.mpc.model_type , 'bilinear' ) && strcmp( obj.mpc.mpc_type , 'nonlinear' )
% [ U , z ] = obj.mpc.get_mpcInput_bilinear( current , refhor );
[ U , z ] = obj.mpc.get_mpcInput_nonlinear( current , refhor );
elseif strcmp( obj.mpc.model_type , 'nonlinear' )
[ U , z ] = obj.mpc.get_mpcInput_nonlinear( current , refhor );
end
comp_time = toc; % mpc computation time
% if a solution was not found, break out of while loop
if any( isnan(U) )
break;
end
% isolate input for this step (may need to make it U(1,:)
u_kp1_sc = U( 2 , : );
% scaleup the input for the results
u_kp1 = obj.scaleup.u( u_kp1_sc )';
% % simulate the system over one time-step (Using sysid model)
% z_k = z;
% u_k_sc = obj.scaledown.u( results.U(end,:) ); % need to use previously calculated input NEED TO MAKE THIS CLEANER!!!
% z_kp1 = obj.mpc.model.A * z_k + obj.mpc.model.B * u_k_sc';
% x_kp1 = obj.mpc.model.C * z_kp1; % DON'T CARE ABOUT THIS JUST WANT IT TO WORK
% y_kp1_sc = x_kp1; % output just scaled version of state since model was learned from observations
% y_kp1 = obj.scaleup.y( y_kp1_sc' )'; % scale output back up
% simulate the system over one time-step (using actual system model)
x_k = results.X( end , : )';
u_k = results.U(end,:)'; %current.u';
if obj.mpc.loaded || exist( 'load_value' , 'var')
w_k = results.W(k,:)'; % actual load at kth timestep
x_kp1 = obj.sys.simulate_Ts( x_k , u_k , w_k );
else
x_kp1 = obj.sys.simulate_Ts( x_k , u_k , [] );
end
y_kp1 = obj.sys.get_y( x_kp1' )';
% record updated results
results.T = [ results.T ; t ];
results.U = [ results.U ; u_kp1' ];
results.Y = [ results.Y ; y_kp1' ];
results.K = [ results.K ; k ];
results.R = [ results.R ; obj.scaleup.ref( ref_sc( k , : ) ) ]; % note that this is not scaled down
results.X = [ results.X ; x_kp1' ];
results.Z = [ results.Z ; z' ]; % current lifted state
results.comp_time = [ results.comp_time ; comp_time ]; % mpc computation time
results.err = [ results.err ; sqrt( sum( ( results.R(end,:) - results.Y(end,:)*obj.mpc.projmtx(:,1:obj.mpc.params.n)' ).^2 ) ) ];
k = k + 1; % increment step counter
end
end
end
end