From 5109317665acebda21aa94325fc8527cc071850d Mon Sep 17 00:00:00 2001 From: chkirschbaum <80094540+chkirschbaum@users.noreply.github.com> Date: Thu, 26 Sep 2024 15:07:31 +0200 Subject: [PATCH] Version without verification from Ashkan to run calculation of mutation frequency matrix --- README.md | 27 +- envs/environment.yml | 0 envs/sc2mfc.yml | 277 ++++++++++-------- scripts/init.py | 658 +++++++++++++++++-------------------------- 4 files changed, 418 insertions(+), 544 deletions(-) delete mode 100644 envs/environment.yml diff --git a/README.md b/README.md index fcb1f4a..9d7beb2 100644 --- a/README.md +++ b/README.md @@ -14,9 +14,9 @@ Proceed as follows to install SMFC: # download the repository to the current working directory using git git clone https://github.com/rki-mf1/sc2-mutation-frequency-calculator.git # build the custom software environment using conda [recommended] -conda env create -n sonar -f sc2-mutation-frequency-calculator/smfc.env.yml +conda env create -n sc2mfc -f sc2-mutation-frequency-calculator/envs/sc2mfc.yml # activate the conda evironment if built -conda activate smfc +conda activate sc2mfc ``` ### 1.3 Options/--help @@ -51,12 +51,9 @@ Mutation frequency matrix How a frequency matrix can be created: ```bash -# download the repository to the current working directory using git -git clone https://github.com/rki-mf1/sc2-mutation-frequency-calculator.git -# build the custom software environment using conda [recommended] -conda env create -n sonar -f sc2-mutation-frequency-calculator/smfc.env.yml -# activate the conda evironment if built -conda activate smfc +python3 scripts/init.py -tsv input/covsonar-rki-2023-02-01--2023-04-01.tsv -m \ + -level aa -cut_freq 0.75 -cut_lin 10 -g \ + -out output/matrix/desh_2023-02-01--2023-04-01.xlsx ``` ## 2. Examples @@ -68,12 +65,7 @@ signature mutations can be used to determine which mutations acuretly define a l How signature mutations can be calculated: ```bash -# download the repository to the current working directory using git -git clone https://github.com/rki-mf1/sc2-mutation-frequency-calculator.git -# build the custom software environment using conda [recommended] -conda env create -n sonar -f sc2-mutation-frequency-calculator/smfc.env.yml -# activate the conda evironment if built -conda activate smfc +python3 scripts/init.py -tsv input/covsonar-rki-2023-02-01--2023-04-01.tsv -sig ``` ### 2.2 consensus^2 for representing a lineage @@ -81,12 +73,7 @@ conda activate smfc How signature mutations can be calculated: ```bash -# download the repository to the current working directory using git -git clone https://github.com/rki-mf1/sc2-mutation-frequency-calculator.git -# build the custom software environment using conda [recommended] -conda env create -n sonar -f sc2-mutation-frequency-calculator/smfc.env.yml -# activate the conda evironment if built -conda activate smfc +python3 scripts/init.py -tsv input/covsonar-rki-2023-02-01--2023-04-01.tsv -con ``` ## 3. Best practice diff --git a/envs/environment.yml b/envs/environment.yml deleted file mode 100644 index e69de29..0000000 diff --git a/envs/sc2mfc.yml b/envs/sc2mfc.yml index 7d93518..9a922c6 100644 --- a/envs/sc2mfc.yml +++ b/envs/sc2mfc.yml @@ -1,125 +1,164 @@ name: sc2mfc channels: - anaconda - - bioconda - conda-forge + - bioconda + - default - defaults dependencies: - - _libgcc_mutex=0.1=conda_forge - - _openmp_mutex=4.5=2_gnu - - bcftools=1.13=h3a49de5_0 - - biopython=1.78=py39h3811e60_2 - - brotli=1.0.9=h166bdaf_9 - - brotli-bin=1.0.9=h166bdaf_9 - - brotlipy=0.7.0=py39h27cfd23_1003 - - bzip2=1.0.8=h7b6447c_0 - - c-ares=1.19.0=h5eee18b_0 - - ca-certificates=2023.08.22=h06a4308_0 - - certifi=2023.7.22=py39h06a4308_0 - - cffi=1.15.1=py39h74dc2b5_0 - - charset-normalizer=2.0.4=pyhd3eb1b0_0 - - contourpy=1.0.2=py39hf939315_2 - - cryptography=39.0.1=py39h9ce1e76_0 - - cycler=0.11.0=pyhd8ed1ab_0 - - dbus=1.13.6=h48d8840_2 - - emboss=6.6.0=h1b6f16a_5 - - et_xmlfile=1.1.0=py39h06a4308_0 - - expat=2.4.9=h6a678d5_0 - - fontconfig=2.13.1=h6c09931_0 - - fonttools=4.42.0=py39hd1e30aa_0 - - freetype=2.11.0=h70c0345_0 - - gdbm=1.18=hd4cb3f1_4 - - gettext=0.21.1=h27087fc_0 - - glib=2.68.4=h9c3ff4c_0 - - glib-tools=2.68.4=h9c3ff4c_0 - - gsl=2.6=ha341630_0 - - gst-plugins-base=1.14.0=h8213a91_2 - - gstreamer=1.14.0=h28cd5cc_2 - - htslib=1.13=h9093b5e_0 - - icu=58.2=he6710b0_3 - - idna=3.4=py39h06a4308_0 - - jpeg=9e=h5eee18b_1 - - kiwisolver=1.4.2=py39hf939315_1 - - krb5=1.19.2=hac12032_0 - - lcms2=2.12=hddcbb42_0 - - ld_impl_linux-64=2.35.1=hea4e1c9_2 - - libblas=3.9.0=8_openblas - - libbrotlicommon=1.0.9=h166bdaf_9 - - libbrotlidec=1.0.9=h166bdaf_9 - - libbrotlienc=1.0.9=h166bdaf_9 - - libcblas=3.9.0=8_openblas - - libcurl=7.82.0=h0b77cf5_0 - - libdeflate=1.17=h5eee18b_0 - - libedit=3.1.20210714=h7f8727e_0 - - libev=4.33=h7f8727e_1 - - libffi=3.3=h58526e2_2 - - libgcc-ng=12.2.0=h65d4601_19 - - libgd=2.3.3=h695aa2c_1 - - libgfortran-ng=9.3.0=hff62375_19 - - libgfortran5=9.3.0=hff62375_19 - - libglib=2.68.4=h3e27bee_0 - - libgomp=12.2.0=h65d4601_19 - - libiconv=1.16=h516909a_0 - - liblapack=3.9.0=8_openblas - - libnghttp2=1.46.0=hce63b2e_0 - - libopenblas=0.3.12=pthreads_h4812303_1 - - libpng=1.6.37=hbc83047_0 - - libssh2=1.10.0=h8f2d780_0 - - libstdcxx-ng=11.2.0=h1234567_1 - - libtiff=4.2.0=h85742a9_0 - - libuuid=1.41.5=h5eee18b_0 - - libwebp-base=1.2.4=h5eee18b_1 - - libxcb=1.15=h0b41bf4_0 - - libxml2=2.9.12=h03d6c58_0 - - libzlib=1.2.11=h166bdaf_1014 - - lz4-c=1.9.4=h6a678d5_0 - - matplotlib=3.6.2=py39hf3d152e_0 - - matplotlib-base=3.6.2=py39h945d387_0 - - more-itertools=8.7.0=pyhd8ed1ab_1 - - munkres=1.1.4=pyh9f0ad1d_0 - - ncurses=6.2=h58526e2_4 - - numpy=1.20.1=py39hdbf815f_0 - - olefile=0.46=pyh9f0ad1d_1 - - openjpeg=2.4.0=hb52868f_1 - - openpyxl=3.0.10=py39h5eee18b_0 - - openssl=1.1.1w=h7f8727e_0 - - packaging=20.9=pyh44b312d_0 - - pandas=1.3.4=py39hde0f152_1 - - pango_aliasor=0.3.0=pyhdfd78af_0 - - pcre=8.45=h9c3ff4c_0 - - perl=5.34.0=h5eee18b_2 - - pillow=8.2.0=py39hf95b381_1 - - pip=21.0.1=pyhd8ed1ab_0 - - pthread-stubs=0.4=h36c2ea0_1001 - - pycparser=2.21=pyhd3eb1b0_0 - - pyopenssl=23.0.0=py39h06a4308_0 - - pyparsing=2.4.7=pyhd8ed1ab_1 - - pyqt=5.9.2=py39h2531618_6 - - pysocks=1.7.1=py39h06a4308_0 - - python=3.9.2=hffdb5ce_0_cpython - - python-dateutil=2.8.2=pyhd3eb1b0_0 - - python_abi=3.9=3_cp39 - - pytz=2022.7=py39h06a4308_0 - - pyyaml=6.0=py39hb9d737c_5 - - qt=5.9.7=h5867ecd_1 - - readline=8.0=he28a2e2_2 - - requests=2.27.1=pyhd8ed1ab_0 - - setuptools=49.6.0=py39hf3d152e_3 - - sip=4.19.13=py39h295c915_0 - - six=1.16.0=pyhd3eb1b0_1 - - sqlite=3.34.0=h74cdb3f_0 - - tk=8.6.10=h21135ba_1 - - tornado=6.3.2=py39hd1e30aa_0 - - tqdm=4.59.0=pyhd8ed1ab_0 - - tzdata=2021a=he74cb21_1 - - unicodedata2=15.0.0=py39hb9d737c_0 - - urllib3=1.26.15=py39h06a4308_0 - - wheel=0.36.2=pyhd3deb0d_0 - - xlsxwriter=3.1.2=pyhd8ed1ab_0 - - xorg-libxau=1.0.11=hd590300_0 - - xorg-libxdmcp=1.1.3=h7f98852_0 - - xz=5.2.5=h516909a_1 - - yaml=0.2.5=h7f98852_2 - - zlib=1.2.11=h166bdaf_1014 - - zstd=1.4.9=haebb681_0 -prefix: /home/ghassemia/.conda/envs/sonar + - _libgcc_mutex=0.1 + - _openmp_mutex=4.5 + - appdirs=1.4.4 + - attrs=22.2.0 + - bcftools=1.13 + - biopython=1.78 + - brotlipy=0.7.0 + - bzip2=1.0.8 + - c-ares=1.18.1 + - ca-certificates=2023.08.22 + - certifi=2023.11.17 + - cffi=1.14.6 + - charset-normalizer=2.0.12 + - clustalw=2.1 + - configargparse=1.5.3 + - cryptography=3.4.7 + - cycler=0.11.0 + - datrie=0.8.2 + - decorator=5.1.1 + - dendropy=4.5.2 + - docutils=0.19 + - emboss=6.6.0 + - et_xmlfile=1.1.0 + - expat=2.5.0 + - font-ttf-dejavu-sans-mono=2.37 + - font-ttf-inconsolata=3.000 + - font-ttf-source-code-pro=2.038 + - font-ttf-ubuntu=0.83 + - fontconfig=2.14.0 + - fonts-conda-ecosystem=1 + - fonts-conda-forge=1 + - freetype=2.10.4 + - giflib=5.2.1 + - gitdb=4.0.10 + - gitpython=3.1.31 + - gsl=2.6 + - htslib=1.13 + - icu=70.1 + - idna=3.4 + - importlib-metadata=6.0.0 + - importlib_resources=5.12.0 + - iqtree=1.6.12 + - jbig=2.1 + - joblib=1.2.0 + - jpeg=9e + - jsonschema=4.17.3 + - jupyter_core=5.2.0 + - kiwisolver=1.4.4 + - krb5=1.19.2 + - lcms2=2.12 + - ld_impl_linux-64=2.35.1 + - lerc=2.2.1 + - libblas=3.9.0 + - libcblas=3.9.0 + - libcurl=7.78.0 + - libdeflate=1.7 + - libedit=3.1.20191231 + - libev=4.33 + - libffi=3.3 + - libgcc-ng=12.2.0 + - libgd=2.3.3 + - libgfortran-ng=9.3.0 + - libgfortran5=9.3.0 + - libgomp=12.2.0 + - libiconv=1.16 + - liblapack=3.9.0 + - libnghttp2=1.43.0 + - libnsl=2.0.0 + - libopenblas=0.3.12 + - libpng=1.6.37 + - libssh2=1.10.0 + - libstdcxx-ng=12.2.0 + - libtiff=4.3.0 + - libuuid=2.32.1 + - libwebp=1.2.2 + - libwebp-base=1.2.2 + - libzlib=1.2.11 + - lz4-c=1.9.3 + - mafft=7.515 + - matplotlib=3.3.2 + - matplotlib-base=3.3.2 + - matplotlib-venn=0.11.9 + - more-itertools=8.7.0 + - mpi=1.0 + - nbformat=5.7.3 + - ncurses=6.2 + - numpy=1.20.1 + - olefile=0.46 + - openjpeg=2.5.0 + - openmpi=4.1.3 + - openpyxl=3.0.10 + - openssl=1.1.1w + - packaging=20.9 + - pandas=1.3.4 + - pango_aliasor=0.3.0 + - pangolin=1.1.14 + - perl=5.32.1 + - phyml=3.3.20211231 + - pillow=8.3.1 + - pip=21.0.1 + - pkgutil-resolve-name=1.3.10 + - platformdirs=3.1.0 + - psutil=5.9.4 + - pycparser=2.21 + - pyopenssl=21.0.0 + - pyparsing=2.4.7 + - pyrsistent=0.19.3 + - pysocks=1.7.1 + - python=3.9.2 + - python-dateutil=2.8.2 + - python-fastjsonschema=2.16.3 + - python_abi=3.9 + - pytools=2020.1 + - pytz=2022.7 + - pyyaml=6.0 + - ratelimiter=1.2.0 + - raxml=8.2.12 + - readline=8.0 + - requests=2.27.1 + - scikit-learn=1.2.2 + - scipy=1.5.3 + - seaborn=0.12.2 + - setuptools=49.6.0 + - six=1.16.0 + - smmap=3.0.5 + - snakemake-minimal=5.13.0 + - sqlite=3.34.0 + - threadpoolctl=2.2.0 + - tk=8.6.10 + - toposort=1.10 + - tornado=6.3.2 + - tqdm=4.59.0 + - traitlets=5.9.0 + - typing-extensions=4.4.0 + - typing_extensions=4.4.0 + - tzdata=2021a + - urllib3=1.26.14 + - wheel=0.36.2 + - wrapt=1.15.0 + - xlsxwriter=3.1.2 + - xz=5.2.5 + - yaml=0.2.5 + - zipp=3.15.0 + - zlib=1.2.11 + - zstd=1.5.2 + - pip: + - click==8.1.7 + - colorama==0.4.6 + - commonmark==0.9.1 + - lineages==2020-05-19 + - pango-collapse==0.7.0 + - pygments==2.16.1 + - rich==12.6.0 + - shellingham==1.5.3 + - typer==0.6.1 +prefix: /home/ashkan/mambaforge/envs/sonar diff --git a/scripts/init.py b/scripts/init.py index cb7caf6..ca32d7a 100644 --- a/scripts/init.py +++ b/scripts/init.py @@ -30,13 +30,21 @@ import math from pango_aliasor.aliasor import Aliasor import json -from scipy.spatial.distance import hamming -from scipy.spatial.distance import pdist, squareform from sklearn.model_selection import KFold -from joblib import Parallel, delayed import random - - +import requests +from io import StringIO +import seaborn as sns +from sklearn.metrics import jaccard_score +from scipy.spatial.distance import jaccard +from sklearn.metrics.pairwise import pairwise_distances +from concurrent.futures import ThreadPoolExecutor +from sklearn.metrics import multilabel_confusion_matrix +from sklearn.metrics import classification_report +from joblib import Parallel, delayed +from multiprocessing import Manager +from sklearn.metrics import precision_score, recall_score +from itertools import combinations as combo ########## input ############ ###Helperfunction### @@ -117,7 +125,6 @@ def list_files_in_directory(path): return files - def find_min_hamming_distance(sequence_row, df_consensus): min_distance = float('inf') dict_c2_distance = {} @@ -125,13 +132,19 @@ def find_min_hamming_distance(sequence_row, df_consensus): distance = hamming(sequence_row, consensus_row) dict_c2_distance[c2] = distance min_distance = min(dict_c2_distance.values(), default=float('inf')) - if min_distance <= 4: + if min_distance <= 3: #1% distance minimal_lineages = [lineage for lineage, distance in dict_c2_distance.items() if distance == min_distance] predicted_lineage = minimal_lineages[0] if len(minimal_lineages) == 1 else " " else: predicted_lineage = " " return predicted_lineage +def find_min_jaccard_distance(sequence_row, df_consensus): + dissimilarity = 1 - np.array([jaccard_score(sequence_row.values.flatten(), consensus_row.values.flatten()) for _, consensus_row in df_consensus.iterrows()]) + if np.argmin(dissimilarity) <= 0.2: + minimal_lineages = df_consensus.index[dissimilarity == np.argmin(dissimilarity)].tolist() + return minimal_lineages + ########## main functionality ############ def init_num_lineages(sample_column, mutation_profile): @@ -479,6 +492,8 @@ def main(): help='optional: statistic will be computed for sequences of given time range (y-m-d:y-m-d), e.g.: 2021-05-01: 2021-05-07') parser.add_argument('-lin', '--lineages', metavar='', required=False, help='optional: choose specific VOI/VOC lineages which are set in TXT file') + parser.add_argument('-par', '--parent_lineages', metavar='', required=False, nargs='+', + help='optional: choose specific anchor lineages as comma-separed string for collapsing sublineages to select signatures') parser.add_argument('-aa', '--aa_mutations', metavar='', required=False, help='optional: choose specific aa mutations which are set in TXT file') parser.add_argument('-m', '--matrix', required=False, action='store_true', @@ -491,6 +506,12 @@ def main(): help='optional: will create consensus sequences based on given lineages') parser.add_argument('-fc', '--verify_frequency_cut_off', required=False, action='store_true', help='optional: will evaluate the performance of the frequency cut-off (default 75%) by calculating precision and recall') + parser.add_argument('-ssp', '--sample_size_abundancy_plot', required=False, action='store_true', + help='optional: will plot the sample abundancies of all lineages within the particular timeframe') + parser.add_argument('-pmp', '--prevalence_mutation_plot', required=False, action='store_true', + help='optional: will plot the prevalence of all mutation frequencies lineage independently in in 5(%) bins') + parser.add_argument('-jch', '--jaccard_c2_heatmap_plot', required=False, action='store_true', + help='optional: will plot the pairwise jaccard dissimarities between all C^2s in a heatmap') parser.add_argument('-cv', '--cross_validation', required=False, action='store_true', help='optional: 10-fold cross-validation of verifiying the frequency cut-off') parser.add_argument('-rb', '--bootstrap', required=False, action='store_true', @@ -515,6 +536,7 @@ def main(): help='optional: set filename for Covsonar output') parser.add_argument('-level', '--mutation_level', metavar='', required=False, help='optional: choose mutation level to get either aa or nt mutation frequencies') + #parser.add_argument('--help', action='help', help='show this help message and exit') args = parser.parse_args() pd.options.mode.chained_assignment = None @@ -600,45 +622,35 @@ def main(): min_date, max_date = df_mutation_profile['date'].min(), df_mutation_profile['date'].max() date_range = f"{min_date.strftime('%Y-%m-%d')}:{max_date.strftime('%Y-%m-%d')}" print("Time Period:", date_range) - + print("Absolut number of sequenced lineages will be counted...") df_dna_aa_profile, dict_num_lineage = init_num_lineages('lineage', df_mutation_profile) - + if args.cut_off_lineage: sample_cut_off = args.cut_off_lineage dict_filter_num_lineage = {k: v for k, v in dict_num_lineage.items() if v >= args.cut_off_lineage} - dict_other_lineages = { - k: v for k, v in dict_num_lineage.items() if v < args.cut_off_lineage} + dict_other_lineages = {k: v for k, v in dict_num_lineage.items() if v < args.cut_off_lineage} else: sample_cut_off = 10 dict_filter_num_lineage = {k: v for k, v in dict_num_lineage.items() if v >= sample_cut_off} - dict_other_lineages = { - k: v for k, v in dict_num_lineage.items() if v < sample_cut_off} + dict_other_lineages = {k: v for k, v in dict_num_lineage.items() if v < sample_cut_off} if args.lineages: # .txt has to be string tmp = list(dict_filter_num_lineage.keys()) input_list = txt_to_string(args.lineages) - lineage_list = list(set(input_list) & set(tmp)) + sorted_lineage_list = sorted(list(set(input_list) & set(tmp))) else: - lineage_list = list(dict_filter_num_lineage.keys()) + sorted_lineage_list = sorted(list(dict_filter_num_lineage.keys())) - sorted_lineage_list = sorted(lineage_list) dict_filter_num_lineage = {key: dict_filter_num_lineage[key] for key in sorted_lineage_list} dict_filter_num_lineage = dict(sorted(dict_filter_num_lineage.items())) - #print("Number of samples per lineage:", dict_filter_num_lineage) - #print(dict_other_lineages) - - print("Compute mutation frequency ...") - - if args.collapse_sublineages: - df_dna_aa_profile["lineage_decompressed"] = [aliasor.uncompress(x) for x in df_dna_aa_profile["lineage"]] + print("Compute mutation frequency ...") if args.matrix or args.signature: print("Matrix will be created on the fly..") # column "other lineages" - #lineage_list.append("other_lineages") sorted_lineage_list.append("other_lineages") other_lineages_samples = sum(dict_other_lineages.values()) dict_filter_num_lineage['other_lineages'] = other_lineages_samples @@ -649,7 +661,6 @@ def main(): #labdiversity #country info is in column "zip" - database = "gisaid" if not df_mutation_profile['lab'].isnull().values.all(): database = "desh" @@ -668,15 +679,14 @@ def main(): lab_zip_counts = selected_mutation_profile.groupby('lineage')[ 'zip'].nunique() - if args.mutation_level == "aa": - df_lineage_mutation_frequency = lineage_mutation_frequency( - "aa_profile", df_dna_aa_profile, sorted_lineage_list, dict_filter_num_lineage) - elif args.mutation_level == "dna": + if args.mutation_level: df_lineage_mutation_frequency = lineage_mutation_frequency( - "dna_profile", df_dna_aa_profile, sorted_lineage_list, dict_filter_num_lineage) + f"{args.mutation_level}_profile", df_dna_aa_profile, sorted_lineage_list, dict_filter_num_lineage) else: "MissingError: mutation level is not defined" + #VERIFICATION STEP (includes maschine learning steps): for simplicity sake this branch is commented out since it does not influences the workflow and purpose of the tool + #VERFICIATION ENDS if not args.cut_off_frequency: # rowwise print("no cutoff") if not args.aa_mutations: @@ -703,9 +713,7 @@ def main(): df_matrix_aa = df_lineage_mutation_frequency[df_lineage_mutation_frequency.index.isin( list_aa_single_changes)] df_matrix_noframeshift_unsorted = df_matrix_aa.fillna(0)[(df_matrix_aa.fillna(0) >= args.cut_off_frequency).any(axis=1)] - - df_matrix_frameshift_unsorted = orf_frameshift_matrix( - df_matrix_noframeshift_unsorted) + df_matrix_frameshift_unsorted = orf_frameshift_matrix(df_matrix_noframeshift_unsorted) if args.mutation_level == "aa": df_matrix_frameshift_unsorted_gene_order = sort_matrix_columnandindex( @@ -732,190 +740,19 @@ def sort_gene_mutations(item): df_matrix_without_lab = sort_matrix_nt_columnandindex( df_matrix_frameshift_unsorted, dict_filter_num_lineage) df_matrix_without_parent = init_num_labs(database, df_matrix_without_lab, lab_zip_counts) - - if args.verify_frequency_cut_off: - df_mutation_profile_without_others = df_mutation_profile[df_mutation_profile['lineage'] != "other_lineages"].reset_index(drop=True) - df_mutation_profile_without_others[f"{args.mutation_level}_profile"] = df_mutation_profile_without_others[f"{args.mutation_level}_profile"].str.split() - - all_characteristic_mutations = [item for sublist in df_mutation_profile_without_others[f"{args.mutation_level}_profile"].to_list() for item in sublist] - all_unique_char_mutations = sorted(list(dict.fromkeys(all_characteristic_mutations))) - filtered_N_all_char_mutations = [item for item in all_unique_char_mutations if 'N' not in item] - filtered_N_all_char_mutations = [element for element in filtered_N_all_char_mutations if element.startswith('del') or (re.compile(r'^[a-zA-Z]+\d+[a-zA-Z]+$')).match(element)] - sorted_all_unique_char_mutations = sorted(filtered_N_all_char_mutations, key=custom_sort_key) - - df_mutation_profile_without_others = df_mutation_profile_without_others[df_mutation_profile_without_others['dna_profile'].apply(lambda x: set(x).issubset(sorted_all_unique_char_mutations))] - df_mutation_profile_without_others = df_mutation_profile_without_others[df_mutation_profile_without_others['dna_profile'].apply(len) > 0] - date_range = date_range.replace(":","_") - - df_matrix = df_matrix_without_parent.tail(-2) - target_lineages = df_matrix.columns.to_list()[:-1] - df_matrix = df_matrix[target_lineages] - - dict_lineage_char_mutations = {} - for lineage in df_matrix.columns: - char_mutations = df_matrix.index[df_matrix[lineage] >= 0.75].tolist() - sorted_char_mutations = sorted(char_mutations, key=custom_sort_key) - dict_lineage_char_mutations[lineage] = sorted_char_mutations - - binary_c2_profiles = pd.DataFrame(0, columns=sorted_all_unique_char_mutations, index=dict_lineage_char_mutations.keys()) - for lineage, mutations in dict_lineage_char_mutations.items(): - binary_c2_profiles.loc[lineage, mutations] = 1 - - #fair number of cases where zero samples are correctly assigned, and all are assigned to one specific other lineage - #-> distance matrix of pairwise distances between all C^2 profiles - #pairwise_distances = pdist(binary_c2_profiles.values, metric='hamming') - #distance_matrix = squareform(pairwise_distances) - #pairwise_distance_c2_df = pd.DataFrame(distance_matrix, columns=dict_lineage_char_mutations.keys(), index=dict_lineage_char_mutations.keys()) - #pairwise_distance_c2_df.to_csv(f"output/frequency_verification/{date_range}/pairwise_distance_c2_{date_range}.csv") - - multi_class_confusion_matrix = pd.DataFrame(0, columns=dict_lineage_char_mutations.keys(), index=dict_lineage_char_mutations.keys()) - - def calculate_confusion_matrix(row, binary_c2_profiles, sorted_all_unique_char_mutations): - actual_lineage = row['lineage'] - binary_sample_profiles = pd.DataFrame(0, columns=sorted_all_unique_char_mutations, index=[actual_lineage]) - binary_sample_profiles.loc[actual_lineage, row[f"{args.mutation_level}_profile"]] = 1 - binary_sample_profiles = binary_sample_profiles[sorted_all_unique_char_mutations] - predicted_lineage = find_min_hamming_distance(binary_sample_profiles, binary_c2_profiles) - return actual_lineage, predicted_lineage - - # Get number of available CPU cores - num_cores = 32 # Change this value based on your CPU capacity - - # Calculate confusion matrix in parallel - results = Parallel(n_jobs=num_cores)( - delayed(calculate_confusion_matrix)(row, binary_c2_profiles, sorted_all_unique_char_mutations) - for _, row in df_mutation_profile_without_others.iterrows() - ) - - for actual_lineage, predicted_lineage in results: - if actual_lineage in multi_class_confusion_matrix.index and predicted_lineage in multi_class_confusion_matrix.columns: - multi_class_confusion_matrix.loc[actual_lineage, predicted_lineage] += 1 - #multi_class_confusion_matrix.to_csv(f"output/frequency_verification/{date_range}/multiclass_confusion_matrix_{args.cut_off_frequency}_{date_range}.csv") - - #multiclass precision and recall - def calculate_precision_recall(confusion_matrix): - precision_values = [] - recall_values = [] - for pangolin, predictions in confusion_matrix.iterrows(): - precision = predictions[pangolin] / predictions.values.sum() - recall = predictions[pangolin] / dict_filter_num_lineage[pangolin] - precision_values.append(float(precision)), recall_values.append(float(recall)) - return precision_values, recall_values - - precision_values, recall_values = calculate_precision_recall(multi_class_confusion_matrix) - avg_precision, avg_recall = sum(precision_values) / len(precision_values), sum(recall_values) / len(recall_values) - avg_precision, avg_recall = math.ceil(avg_precision * 1000) / 1000, math.ceil(avg_recall * 1000) / 1000 - print("Precision: ", avg_precision, "Recall: ", avg_recall) - - #Random Classifier - ''' - def generate_predictions(lineages): - predictions = [] - possible_values = list(set(lineages)) # Unique values in the 'lineages' column - possible_values.append('no assignment') - - for _ in range(len(lineages)): - random_values = [random.choice(possible_values) for _ in range(10000)] # Select 1000 random values - avg_prediction = max(set(random_values), key=random_values.count) # Select most frequent value - predictions.append(avg_prediction) - return predictions - - df_mutation_profile_without_others['predicted_lineages'] = generate_predictions(df_mutation_profile_without_others['lineage']) - random_classifier = pd.DataFrame(0, columns=dict_lineage_char_mutations.keys(), index=dict_lineage_char_mutations.keys()) - for idx, rows in df_mutation_profile_without_others.iterrows(): - rc_actual_lineage, rc_predicted_lineage = rows['lineage'], rows['predicted_lineages'] - if rc_actual_lineage in multi_class_confusion_matrix.index and rc_predicted_lineage in multi_class_confusion_matrix.columns: - random_classifier.loc[rc_actual_lineage, rc_predicted_lineage] += 1 - - rc_precision_values, rc_recall_values = calculate_precision_recall(random_classifier) - rc_avg_precision, rc_avg_recall = sum(rc_precision_values) / len(rc_precision_values), sum(rc_recall_values) / len(rc_recall_values) - print("Precision:", rc_avg_precision, "Recall: ", rc_avg_recall) - ''' - - if args.cross_validation: - #10-fold cross validation -> 10 multi_class_confusion_matrix - #df_mutation_profile_without_others is the whole dataset that should be splitted - #no sample cut-off for splitted (traindf) to compute c^2's - kf = KFold(n_splits=10) - counter=0 - for train, test in kf.split(df_mutation_profile_without_others): - train_df, test_df = df_mutation_profile_without_others.iloc[train].reset_index(drop=True), df_mutation_profile_without_others.iloc[test].reset_index(drop=True) - _, dict_test_num_lineage = init_num_lineages('lineage', test_df) - - all_train_characteristic_mutations = [item for sublist in train_df[f"{args.mutation_level}_profile"].to_list() for item in sublist] - all_train_unique_char_mutations = sorted(list(dict.fromkeys(all_train_characteristic_mutations))) - filtered_N_train_char_mutations = [item for item in all_train_unique_char_mutations if 'N' not in item] - filtered_N_train_char_mutations = [element for element in filtered_N_train_char_mutations if element.startswith('del') or (re.compile(r'^[a-zA-Z]+\d+[a-zA-Z]+$')).match(element)] - sorted_train_unique_char_mutations = sorted(filtered_N_train_char_mutations, key=custom_sort_key) - - df_dna_aa_train_profile, dict_num_train_lineage = init_num_lineages('lineage', train_df) - df_dna_aa_train_profile[f"{args.mutation_level}_profile"] = df_dna_aa_train_profile[f"{args.mutation_level}_profile"].apply(lambda x: ' '.join(x)) - dict_num_train_lineage = dict(sorted(dict_num_train_lineage.items())) - sorted_train_lineage_list = list(dict_num_train_lineage.keys()) - - df_train_lineage_mutation_frequency = lineage_mutation_frequency(f"{args.mutation_level}_profile", df_dna_aa_train_profile, sorted_train_lineage_list, dict_num_train_lineage) - df_train_lineage_mutation_frequency = df_train_lineage_mutation_frequency.fillna(0)[(df_train_lineage_mutation_frequency.fillna(0) >= args.cut_off_frequency).any(axis=1)] - - dict_train_lineage_char_mutations = {} - for train_lineage in df_train_lineage_mutation_frequency.columns: - train_char_mutations = df_train_lineage_mutation_frequency.index[df_train_lineage_mutation_frequency[train_lineage] >= args.cut_off_frequency].tolist() - sorted_train_char_mutations = sorted(train_char_mutations, key=custom_sort_key) - dict_train_lineage_char_mutations[train_lineage] = sorted_train_char_mutations - - binary_train_c2_profiles = pd.DataFrame(0, columns=sorted_train_unique_char_mutations, index=dict_train_lineage_char_mutations.keys()) - for train_lineage, train_mutations in dict_train_lineage_char_mutations.items(): - binary_train_c2_profiles.loc[train_lineage, train_mutations] = 1 - - multi_class_train_test_confusion_matrix = pd.DataFrame(0, columns=dict_train_lineage_char_mutations.keys(), index=dict_train_lineage_char_mutations.keys()) - test_results = Parallel(n_jobs=num_cores)( - delayed(calculate_confusion_matrix)(row, binary_train_c2_profiles, sorted_train_unique_char_mutations) - for _, row in test_df.iterrows() - ) - - for actual_train_lineage, predicted_test_lineage in test_results: - if actual_train_lineage in multi_class_train_test_confusion_matrix.index and predicted_test_lineage in multi_class_train_test_confusion_matrix.columns: - multi_class_train_test_confusion_matrix.loc[actual_train_lineage, predicted_test_lineage] += 1 - - counter+=1 - test_precision_values = [] - test_recall_values = [] - for train_pangolin, test_predictions in multi_class_train_test_confusion_matrix.iterrows(): - if test_predictions.values.sum() == 0: - test_precision = 0 - else: - test_precision = test_predictions[train_pangolin] / test_predictions.values.sum() - test_precision_values.append(float(test_precision)) - - if train_pangolin in dict_test_num_lineage: - if dict_test_num_lineage[train_pangolin] == 0: - test_recall = 0 # Define what precision should be if denominator is zero - else: - test_recall = test_predictions[train_pangolin] / dict_test_num_lineage[train_pangolin] - test_recall_values.append(float(test_recall)) - avg_test_precision, avg_test_recall = sum(test_precision_values) / len(test_precision_values), sum(test_recall_values) / len(test_recall_values) - avg_test_precision, avg_test_recall = math.ceil(avg_test_precision * 1000) / 1000, math.ceil(avg_test_recall * 1000) / 1000 - print(f"{counter}. fold", "Precision:", avg_test_precision, "Recall: ", avg_test_recall) - - quit() - else: - #parent-child relationship - sublineages_list = df_matrix_without_parent.columns.to_list() - - aliasor = Aliasor() #https: // github.com/corneliusroemer/pango_aliasor - aliasor_uncompressed = [aliasor.uncompress( - sublineage) for sublineage in sublineages_list] - parent_lineages = [pangolin_parent(lineage_uncompressed) - for lineage_uncompressed in aliasor_uncompressed] - - parent_lineages[parent_lineages.index('other_lineages')] = '---' - parent_lineages_row = pd.DataFrame( - [parent_lineages], columns=df_matrix_without_parent.columns) - parent_lineages_row.index = ['Parent lineage'] - df_matrix = pd.concat( - [parent_lineages_row, df_matrix_without_parent]) - + + #parent-child relationship + sublineages_list = df_matrix_without_parent.columns.to_list() + aliasor = Aliasor() #https: // github.com/corneliusroemer/pango_aliasor + aliasor_uncompressed = [aliasor.uncompress(sublineage) for sublineage in sublineages_list] + parent_lineages = [pangolin_parent(lineage_uncompressed) for lineage_uncompressed in aliasor_uncompressed] + parent_lineages[parent_lineages.index('other_lineages')] = '---' + parent_lineages_row = pd.DataFrame([parent_lineages], columns=df_matrix_without_parent.columns) + parent_lineages_row.index = ['Parent lineage'] + df_matrix = pd.concat([parent_lineages_row, df_matrix_without_parent]) + #df_matrix = df_matrix.transpose() if args.matrix: - print(df_matrix) + if args.output: outfile = args.output else: @@ -960,117 +797,135 @@ def generate_predictions(lineages): plt.title('Country diversity') # deletion average frequencies against SNPs for all lineages - ''' - if args.del_freq_plot: - df_matrix['Freq_Mean'] = df_matrix.mean() - print(df_matrix) - quit() - x_values, y_values = sorted_count_df['Value'], sorted_count_df['Count'] - plt.bar(x_values, y_values) - plt.xlabel('Number of Labs') - plt.ylabel('Number of Lineages') - plt.title('Lab diversity') - - dict_mut_freq = {} - for index, row in df_matrix.iloc[3:].iterrows(): - row_values = row.tolist() - dict_mut_freq[index] = mean(row_values) - - dict_del_mutations = { - key: value for key, value in dict_mut_freq.items() if "del" in key} - dict_snp_mutations = { - key: value for key, value in dict_mut_freq.items() if not "del" in key} - - plt.bar(list(dict_del_mutations.keys()), - list(dict_del_mutations.values())) - plt.xlabel('Deletion mutations') - plt.ylabel('Frequency') - plt.title( - f'Frequency of deletions within {date_range}') - plt.xticks(rotation=90) - plt.show() - - plt.bar(list(dict_snp_mutations.keys()), - list(dict_snp_mutations.values())) - plt.xlabel('Deletion mutations') - plt.ylabel('Frequency') - plt.title( - f'Frequency of deletions within {date_range}') - plt.xticks(rotation=90) - plt.show() - - if args.output: - plt.savefig(f"output/matrix/{args.output}.png") - else: - plt.savefig(f"output/matrix/{date_range}_labdiversity.png") - ''' + + # if args.del_freq_plot: + # df_matrix['Freq_Mean'] = df_matrix.mean() + # print(df_matrix) + # quit() + # x_values, y_values = sorted_count_df['Value'], sorted_count_df['Count'] + # plt.bar(x_values, y_values) + # plt.xlabel('Number of Labs') + # plt.ylabel('Number of Lineages') + # plt.title('Lab diversity') + + # dict_mut_freq = {} + # for index, row in df_matrix.iloc[3:].iterrows(): + # row_values = row.tolist() + # dict_mut_freq[index] = mean(row_values) + + # dict_del_mutations = { + # key: value for key, value in dict_mut_freq.items() if "del" in key} + # dict_snp_mutations = { + # key: value for key, value in dict_mut_freq.items() if not "del" in key} + + # plt.bar(list(dict_del_mutations.keys()), + # list(dict_del_mutations.values())) + # plt.xlabel('Deletion mutations') + # plt.ylabel('Frequency') + # plt.title( + # f'Frequency of deletions within {date_range}') + # plt.xticks(rotation=90) + # plt.show() + + # plt.bar(list(dict_snp_mutations.keys()), + # list(dict_snp_mutations.values())) + # plt.xlabel('Deletion mutations') + # plt.ylabel('Frequency') + # plt.title( + # f'Frequency of deletions within {date_range}') + # plt.xticks(rotation=90) + # plt.show() + + # if args.output: + # plt.savefig(f"output/matrix/{args.output}.png") + # else: + # plt.savefig(f"output/matrix/{date_range}_labdiversity.png") + elif args.signature: df_matrix = df_matrix.tail(-3) - target_lineages = df_matrix.columns.to_list()[:-1] - - if args.cut_off_frequency: - frequency_cut_off = args.cut_off_frequency - else: - frequency_cut_off = 0.75 + targets = df_matrix.columns.to_list()[:-1] if args.ignore_sublineages: - #1) group lineage-complexed according to their (obvious) hierachical order - obv_hierachy_lineages = {} - for lineage in target_lineages: - prefix = lineage.split('.', 2)[:2] # Get prefix until the second dot - prefix = '.'.join(prefix) - if prefix not in obv_hierachy_lineages: - obv_hierachy_lineages[prefix] = [] - obv_hierachy_lineages[prefix].append(lineage) - sublineages_to_delete = [col for cols in obv_hierachy_lineages.values() if len(cols) >= 2 for col in cols[1:]] - df_matrix.drop(sublineages_to_delete, axis=1, inplace=True) + + def ignore_sublineages(target_lineages): + aliasor_uncompress_targets = [aliasor.uncompress(sublineage) for sublineage in target_lineages] + sublineages = {} + for lineage in aliasor_uncompress_targets: + sublineages[lineage] = set() + for other_lineage in aliasor_uncompress_targets: + if lineage != other_lineage and lineage in other_lineage: + sublineages[lineage].add(other_lineage) + keys_to_remove = set() + for sub_set in sublineages.values(): + keys_to_remove.update(sub_set) + sublineages = {key: value for key, value in sublineages.items() if key not in keys_to_remove} + anchors = list(sublineages.keys()) + aliasor_compress_anchors = [aliasor.compress(lineage) for lineage in anchors] + return aliasor_compress_anchors - #2) apply either Aliasor or Yusras Script or https://github.com/cov-lineages/pangolin-data/blob/main/pangolin_data/data/alias_key.json - sublineages_sus = [col for cols in obv_hierachy_lineages.values() if len(cols) == 1 for col in cols] - sublineages_prefix = ['.'.join(col.split('.')[:2]) if col.count('.') > 1 else col for col in sublineages_sus] - parent_of_sublineages = [aliasor.parent(col) for col in sublineages_prefix] - print(parent_of_sublineages) - target_lineages = df_matrix.columns.to_list()[:-1] - quit() - - - ##############count values (in how many lineages a mutations is characteristic) - #due to aggregation of lineage complexes some mutations could be lost their characteristic properties - df_filtered = df_matrix.dropna(how='all') - df_matrix = df_filtered.loc[~(df_filtered.eq(0) | df_filtered.isnull()).all(axis=1)] - - counts = (df_matrix >= frequency_cut_off).sum(axis=1) - frequencies = df_matrix[df_matrix >= frequency_cut_off].apply( - lambda row: row[row.notnull()].tolist(), axis=1) + anchors = ignore_sublineages(targets) + anchors.append("other_lineages") + df_matrix = df_matrix[anchors].fillna(0)[(df_matrix[anchors].fillna(0) >= args.cut_off_frequency).any(axis=1)] + targets = df_matrix.columns.to_list()[:-1] - #count and frequencies depict df_matrix - count_freq_table = pd.DataFrame( - {'count': counts, 'frequency': frequencies}) - count_freq_table['frequency'] = count_freq_table['frequency'].apply(tuple) - count_freq_table['lineages'] = df_matrix.apply(lambda x: x.index[x >= frequency_cut_off].to_list(), axis=1) - count_freq_table_sort = count_freq_table.sort_values(by=['count', 'frequency'], ascending=[True, False]) - count_freq_table_sort['frequency'] = count_freq_table_sort['frequency'].apply(list) - - #count = 1 - single_signature_table = count_freq_table_sort[count_freq_table_sort['count'] == 1] - print(df_matrix) - print(aliasor.parent('HK.3')) - print(single_signature_table) - quit() + print("Target lineages: ", targets, len(targets)) + #print("Convert mutation frequency table into a lookup with levels: ") + def map_frequency(df): + return df.index.map(lambda idx: df.loc[idx, 'frequency']) + levels = (df_matrix >= args.cut_off_frequency).sum(axis=1) # in how many lineages a mutations is characteristic in df_matrix + frequencies = df_matrix[df_matrix >= args.cut_off_frequency].apply(lambda row: row[row.notnull()].tolist(), axis=1) # frequencies of mutations in df_matrix + level_freq_table = pd.DataFrame({'level': levels, 'frequency': frequencies}) + level_freq_table['frequency'] = level_freq_table['frequency'].apply(tuple) + level_freq_table['lineages'] = df_matrix.apply(lambda x: x.index[x >= args.cut_off_frequency].to_list(), axis=1) # columnnames from df_matrix corresponding to the indexname and its columnvalue from "frequencies" + level_freq_table_sort = level_freq_table.sort_values(by=['level', 'frequency'], ascending=[True, False]) + level_freq_table_sort['frequency'] = level_freq_table_sort['frequency'].apply(list) + sorted_data = level_freq_table_sort.apply(lambda row: sorted(zip(row['frequency'], row['lineages']), reverse=True), axis=1) # Sorting the dataframe by 'frequency' column in descending order + level_freq_table_sort['frequency'], level_freq_table_sort['lineages'] = sorted_data.apply(lambda x: [item[0] for item in x]) , sorted_data.apply(lambda x: [item[1] for item in x]) + + # Initialize dictionary to store valid index combinations + valid_combinations = {lineage: [] for lineage in targets} + + # Iterate over unique levels + for k in range(1,6): + if k == 1: # For k=1, find valid single signatures + for index, row in level_freq_table_sort[level_freq_table_sort['level'] <= k].iterrows(): + for lineage in row['lineages']: + if lineage in valid_combinations: + valid_combinations[lineage].append([index]) + else: + # For k>1, find valid k-signature-combinations + for index_combination in combo(level_freq_table_sort[level_freq_table_sort['level'] == k].index, k): + lineages_intersection = set.intersection(*[set(level_freq_table_sort.at[idx, 'lineages']) for idx in index_combination]) + if len(lineages_intersection) == 1: + valid = True + if k > 2: + for pairwise_combination in combo(index_combination, 2): + pairwise_intersection = set.intersection(*[set(level_freq_table_sort.at[idx, 'lineages']) for idx in pairwise_combination]) + if len(pairwise_intersection) != k-1: + valid = False + break + if valid: + for lineage in lineages_intersection: + valid_combinations[lineage].append(list(index_combination)) + + # Print or use valid_combinations as needed + for lineage, combinations in valid_combinations.items(): + print(f"Lineage: {lineage}, Valid Combinations: {combinations}") + + #level = 1 + single_signature_table = level_freq_table_sort[level_freq_table_sort['level'] == 1] single_signature_table['lineages'] = single_signature_table['lineages'].apply(lambda x: x[0]) - unique_lineages = single_signature_table['lineages'].unique() #vorkommen können aus count tabelle raus + unique_lineages = single_signature_table['lineages'].unique() #vorkommen können aus level tabelle raus print("\n", "Unique lineages, die single signature haben: ", unique_lineages, "\n") print(single_signature_table) - df_signature_mutations = pd.DataFrame( - {'Lineages': single_signature_table['lineages'].unique()}).sort_values(by=['Lineages']) + df_signature_mutations = pd.DataFrame({'Lineages': single_signature_table['lineages'].unique()}).sort_values(by=['Lineages']) df_signature_mutations['Combination Length'] = 1 df_signature_mutations['Signature Mutations'] = single_signature_table.groupby('lineages').apply(lambda x: x.index.tolist()) df_signature_mutations.reset_index(drop=True, inplace=True) print(df_signature_mutations) - print(single_signature_table.groupby( - 'lineages').apply(lambda x: x.index.tolist())) + print(single_signature_table.groupby('lineages').apply(lambda x: x.index.tolist())) single_signatures = {} #aufheben, um mit combinations zu mergen und dann als .tsv/.txt speichern for lineage in unique_lineages: @@ -1086,21 +941,18 @@ def generate_predictions(lineages): print(f"Lineage: {value}") print(grouped) - #count > 1 - + #level > 1 print( "\n", "Unique lineages, die single signature haben: ", unique_lineages, "\n") - loi_find_combinations = [item for item in target_lineages if item not in unique_lineages] + loi_find_combinations = [item for item in targets if item not in unique_lineages] print("Lineages which need a combination of signature mutations: ",loi_find_combinations) - combination_signature_table = count_freq_table_sort[count_freq_table_sort['count'] != 1] + combination_signature_table = level_freq_table_sort[level_freq_table_sort['level'] != 1] combination_signature_filtered = combination_signature_table[~combination_signature_table['lineages'].apply(lambda x: set(x).issubset(unique_lineages))] combination_signature_filtered[['frequency', 'lineages']] = combination_signature_filtered.apply(lambda row: pd.Series( - [list(frequency) for frequency in zip(*sorted(zip(row['frequency'], row['lineages']), reverse=True))]), - axis=1) + [list(frequency) for frequency in zip(*sorted(zip(row['frequency'], row['lineages']), reverse=True))]),axis=1) combination_signature_filtered['frequency'] = combination_signature_filtered['frequency'].apply(tuple) - combination_signature_filtered = combination_signature_filtered.sort_values( - by=['count', 'frequency'], ascending=[True, False]) + combination_signature_filtered = combination_signature_filtered.sort_values(by=['level', 'frequency'], ascending=[True, False]) combination_signature_filtered['frequency'] = combination_signature_filtered['frequency'].apply(list) print(combination_signature_filtered) @@ -1124,11 +976,8 @@ def generate_predictions(lineages): if condition_met: break k+=1 + print(signature_combinations_loi) - #if args.benchmark - # cumulative distribution - # x-axis: k combinatorial signature mutations - # y-axis: either runtime or number of lineages were assigned by signature mutations elif args.consensus: print("Mutation Frequency per lineage will be computed..") @@ -1181,7 +1030,7 @@ def generate_predictions(lineages): #print(f"Number of samples which exactly reflect the ground truth of {lineage}:", count_equal_length) #print(f"Ratio of samples which exactly reflect the ground truth of {lineage}:", count_equal_length/dict_filter_num_lineage[lineage]) - ''' #bootstrap approach + #bootstrap approach x_values, y_values = sorted_lineage_list, num_reflect_ground_truth plt.bar(x_values, y_values) plt.xlabel('Lineages') @@ -1207,94 +1056,93 @@ def generate_predictions(lineages): plt.xticks(rotation=90) plt.show() - # random bootstrap approach - sample_size = math.floor( - sample_size*sample_size_factor) - dict_filter_num_lineage[lineage] = sample_size + # sample_size = math.floor( + # sample_size*sample_size_factor) + # dict_filter_num_lineage[lineage] = sample_size - df_lineage_sample = pd.DataFrame(columns=['Lineages', 'Sample_size', 'Reduction_factor', 'Bootstrap_value']) - while sample_size >= 2: - bootstrap_range = 100 - mutation_profile_sampled = [] - for k in range(bootstrap_range): - df_lineage_mutation_profile_subsample = df_lineage_mutation_profile.sample(n=sample_size)['dna_profile'].reset_index(drop=True) - df_lineage_subprofile = df_lineage_mutation_profile_subsample.dropna() - mutation_profile_aggregated = [ - item for sublist in df_lineage_subprofile.str.split() for item in sublist] - df_num_mutations = pd.Series(mutation_profile_aggregated).value_counts( - ).rename_axis('mutation').reset_index(name='counts') - df_num_mutations.set_index('mutation', inplace=True) - df_num_mutations.index.name = None - df_num_mutations.rename(columns={'counts': lineage}, inplace=True) - df_num_mutations[lineage] = round(df_num_mutations[lineage] / dict_filter_num_lineage[lineage], 3) - list_mutations = df_num_mutations.index[df_num_mutations[lineage] - >= bootstrap_threshold].tolist() - mutation_profile_sampled.append(list_mutations) + # df_lineage_sample = pd.DataFrame(columns=['Lineages', 'Sample_size', 'Reduction_factor', 'Bootstrap_value']) + # while sample_size >= 2: + # bootstrap_range = 100 + # mutation_profile_sampled = [] + # for k in range(bootstrap_range): + # df_lineage_mutation_profile_subsample = df_lineage_mutation_profile.sample(n=sample_size)['dna_profile'].reset_index(drop=True) + # df_lineage_subprofile = df_lineage_mutation_profile_subsample.dropna() + # mutation_profile_aggregated = [ + # item for sublist in df_lineage_subprofile.str.split() for item in sublist] + # df_num_mutations = pd.Series(mutation_profile_aggregated).value_counts( + # ).rename_axis('mutation').reset_index(name='counts') + # df_num_mutations.set_index('mutation', inplace=True) + # df_num_mutations.index.name = None + # df_num_mutations.rename(columns={'counts': lineage}, inplace=True) + # df_num_mutations[lineage] = round(df_num_mutations[lineage] / dict_filter_num_lineage[lineage], 3) + # list_mutations = df_num_mutations.index[df_num_mutations[lineage] + # >= bootstrap_threshold].tolist() + # mutation_profile_sampled.append(list_mutations) - boostrap = bootstrap_value(ground_truth, mutation_profile_sampled, bootstrap_range) - #print(f"Bootstrap-value for {sample_size}: ", boostrap) - df_lineage_sample.loc[len(df_lineage_sample)] = [ - lineage, sample_size, sample_size_factor, boostrap] - sample_size = math.floor(sample_size*sample_size_factor) - dict_filter_num_lineage[lineage] = sample_size - if (df_lineage_sample['Bootstrap_value'] >= 0.75).any(): - row_minimum_sample_size = df_lineage_sample[df_lineage_sample['Bootstrap_value']>= 0.75].iloc[-1] - df_bootstrap_lineages = df_bootstrap_lineages.append( - row_minimum_sample_size, ignore_index=True) - else: - df_bootstrap_lineages.loc[len(df_bootstrap_lineages)] = [ - lineage, df_lineage_sample['Sample_size'].iloc[0]*2, sample_size_factor, 1.0] - print(df_bootstrap_lineages) - - date_range = date_range.replace(":", "_") - df_bootstrap_lineages.to_csv(f'output/bootstrap/{date_range}/2023-09-06_accession-all_min-sample-size_cut-off-0-75_{date_range}.tsv', sep="\t", index=False) + # boostrap = bootstrap_value(ground_truth, mutation_profile_sampled, bootstrap_range) + # #print(f"Bootstrap-value for {sample_size}: ", boostrap) + # df_lineage_sample.loc[len(df_lineage_sample)] = [ + # lineage, sample_size, sample_size_factor, boostrap] + # sample_size = math.floor(sample_size*sample_size_factor) + # dict_filter_num_lineage[lineage] = sample_size + # if (df_lineage_sample['Bootstrap_value'] >= 0.75).any(): + # row_minimum_sample_size = df_lineage_sample[df_lineage_sample['Bootstrap_value']>= 0.75].iloc[-1] + # df_bootstrap_lineages = df_bootstrap_lineages.append( + # row_minimum_sample_size, ignore_index=True) + # else: + # df_bootstrap_lineages.loc[len(df_bootstrap_lineages)] = [ + # lineage, df_lineage_sample['Sample_size'].iloc[0]*2, sample_size_factor, 1.0] + # print(df_bootstrap_lineages) + + # date_range = date_range.replace(":", "_") + # df_bootstrap_lineages.to_csv(f'output/bootstrap/{date_range}/2023-09-06_accession-all_min-sample-size_cut-off-0-75_{date_range}.tsv', sep="\t", index=False) - #bootstrap plot - x_values, y_values = sorted_lineage_list, df_bootstrap_lineages['Sample_size'] - plt.bar(x_values, y_values) - plt.xlabel('Lineages') - plt.ylabel('Minimum sample size') - plt.title('Random Bootstrap for determining minimum sample size') - plt.savefig( - f"output/bootstrap/{date_range}/2023-09-06_accession-all_min-sample-size_cut-off-0-75.png") + # #bootstrap plot + # x_values, y_values = sorted_lineage_list, df_bootstrap_lineages['Sample_size'] + # plt.bar(x_values, y_values) + # plt.xlabel('Lineages') + # plt.ylabel('Minimum sample size') + # plt.title('Random Bootstrap for determining minimum sample size') + # plt.savefig( + # f"output/bootstrap/{date_range}/2023-09-06_accession-all_min-sample-size_cut-off-0-75.png") - elif args.treeshrink_cirlce_diagram: - directory_path = "output/consensus/2023-09-02_desh-accesions-all_cut-lin-5_consensus-squared/" - file_list = list_files_in_directory(directory_path) - if file_list: - list_all_intersected_lineages = [filename.split("_")[2].rsplit(".", 1)[ - 0] for filename in file_list] - else: - print("No files found in the directory.") + # elif args.treeshrink_cirlce_diagram: + # directory_path = "output/consensus/2023-09-02_desh-accesions-all_cut-lin-5_consensus-squared/" + # file_list = list_files_in_directory(directory_path) + # if file_list: + # list_all_intersected_lineages = [filename.split("_")[2].rsplit(".", 1)[ + # 0] for filename in file_list] + # else: + # print("No files found in the directory.") + + # df_treeshrink_removed_c1 = pd.read_table('input/phylotree_usher_c2/treeshrink_removed_c1.tsv', low_memory=False) + # list_treeshrink_removed_c1 = sorted(df_treeshrink_removed_c1['lineage'].unique()) + # list_treeshrink_removed_c1_same = [ + # item for item in list_treeshrink_removed_c1 if item in list_all_intersected_lineages] - df_treeshrink_removed_c1 = pd.read_table('input/phylotree_usher_c2/treeshrink_removed_c1.tsv', low_memory=False) - list_treeshrink_removed_c1 = sorted(df_treeshrink_removed_c1['lineage'].unique()) - list_treeshrink_removed_c1_same = [ - item for item in list_treeshrink_removed_c1 if item in list_all_intersected_lineages] + # file_path = "input/phylotree_usher_c2/removed_cut-lin-10.txt" + # with open(file_path, 'r') as file: + # # 2. Read the file's contents + # file_contents = file.read() + # list_treeshrink_removed_c2 = file_contents.split('\t') + # if list_treeshrink_removed_c2[-1] == '\n': + # list_treeshrink_removed_c2.pop() + # list_treeshrink_removed_c2 = sorted(list_treeshrink_removed_c2) + # list_treeshrink_removed_c2_same = [ + # item for item in list_treeshrink_removed_c2 if item in list_all_intersected_lineages] - file_path = "input/phylotree_usher_c2/removed_cut-lin-10.txt" - with open(file_path, 'r') as file: - # 2. Read the file's contents - file_contents = file.read() - list_treeshrink_removed_c2 = file_contents.split('\t') - if list_treeshrink_removed_c2[-1] == '\n': - list_treeshrink_removed_c2.pop() - list_treeshrink_removed_c2 = sorted(list_treeshrink_removed_c2) - list_treeshrink_removed_c2_same = [ - item for item in list_treeshrink_removed_c2 if item in list_all_intersected_lineages] + # venn2_unweighted([set(list_treeshrink_removed_c1), set(list_treeshrink_removed_c2)], ('C1', 'C2')) + # plt.title( + # "Removed lineages by treeshrink from UShER and C^2 phylotree") + # plt.savefig("input/phylotree_usher_c2/venn_treeshrink-result.png") - venn2_unweighted([set(list_treeshrink_removed_c1), set(list_treeshrink_removed_c2)], ('C1', 'C2')) - plt.title( - "Removed lineages by treeshrink from UShER and C^2 phylotree") - plt.savefig("input/phylotree_usher_c2/venn_treeshrink-result.png") + # venn2_unweighted([set(list_treeshrink_removed_c1_same), set(list_treeshrink_removed_c2_same)], ('C1', 'C2')) + # plt.title("Removed lineages by treeshrink from UShER and C^2 phylotree (same lineages)") + # plt.savefig("input/phylotree_usher_c2/venn_treeshrink-result_same-lineages.png") - venn2_unweighted([set(list_treeshrink_removed_c1_same), set(list_treeshrink_removed_c2_same)], ('C1', 'C2')) - plt.title("Removed lineages by treeshrink from UShER and C^2 phylotree (same lineages)") - plt.savefig("input/phylotree_usher_c2/venn_treeshrink-result_same-lineages.png") - ''' else: print("creating consensus sequences...") @@ -1377,9 +1225,9 @@ def generate_predictions(lineages): print("Consensus sequences are Covsonar approved..") else: print("No further check whether consensus have the right mutations") - else: - print("No option for Output type.") - print("Mutation profile for nucleotides and amino acids: ", "\n", df_dna_aa_profile) + # else: + # print("No option for Output type.") + # print("Mutation profile for nucleotides and amino acids: ", "\n", df_dna_aa_profile) else: print("Mutation profiles path does not exist")