-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
604 lines (555 loc) · 23.5 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
from collections import defaultdict
import csv
from datetime import datetime
import multiprocessing as mp
import os
from pathlib import Path
from time import perf_counter
from urllib.parse import urlparse
import numpy as np
import pandas as pd
from sqlalchemy import create_engine
from sqlalchemy import exc
from pages.app_controller import calculate_mutation_sig
from pages.app_controller import calculate_tri_mutation_sig
from pages.app_controller import create_snp_table
from pages.config import CACHE_DIR
from pages.config import DB_URL
from pages.config import redis_manager
from pages.utils import load_Cpickle
from pages.utils import write_Cpickle
tables = ["propertyView", "variantView"]
# pandas normally uses python strings, which have about 50 bytes overhead. that's catastrophic!
STRINGTYPE = "string[pyarrow]"
INTTYPE = "int32"
column_dtypes = {
"propertyView": {
"sample.id": INTTYPE, # needed
"sample.name": STRINGTYPE, # needed
"property.id": INTTYPE,
# needed: COUNTRY, IMPORTED, COLLECTION_DATE, RELEASE_DATE, ISOLATE, LENGTH, SEQ_TECH, COUNTRY, GEO_LOCATION, HOST, GENOME_COMPLETENESS
"property.name": STRINGTYPE,
"propery.querytype": STRINGTYPE,
"property.datatype": STRINGTYPE,
"property.standard": STRINGTYPE, # this one is always NULL
# needed - value_integer -> LENGTH, this one is often NULL -> stringType instead of intType
"value_integer": STRINGTYPE,
"value_float": "float32",
# needed - value_text -> COLLECTION_DATE, RELEASE_DATE, ISOLATE, SEQ_TECH, COUNTRY, GEO_LOCATION, HOST
"value_text": STRINGTYPE,
"value_zip": STRINGTYPE,
"value_varchar": STRINGTYPE,
"value_blob": STRINGTYPE, # actually "blobType"
# needed - value_date -> RELEASE_DATE, dateime coversion introduces errors
"value_date": STRINGTYPE,
},
"variantView": {
"sample.id": INTTYPE, # needed
"sample.name": STRINGTYPE, # needed
"sample.seqhash": STRINGTYPE,
# Cannot convert non-finite values (NA or inf) to integer
"reference.id": STRINGTYPE,
"reference.accession": STRINGTYPE,
"reference.standard": STRINGTYPE,
"molecule.id": INTTYPE,
"molecule.accession": STRINGTYPE,
"molecule.standard": STRINGTYPE,
"element.id": INTTYPE,
"element.accession": STRINGTYPE,
"element.symbol": STRINGTYPE, # needed = Gene Name
"element.standard": STRINGTYPE,
"element.type": STRINGTYPE, # cds (=AA mutations) or source (=Nt mutations)
# Cannot convert non-finite values (NA or inf) to integer --> STRINGTYPE
"variant.id": STRINGTYPE,
"variant.ref": STRINGTYPE,
"variant.start": STRINGTYPE,
"variant.end": STRINGTYPE,
"variant.alt": STRINGTYPE,
"variant.label": STRINGTYPE, # needed mutation name
# Cannot convert non-finite values (NA or inf) to integer --> STRINGTYPE
"variant.parent_id": STRINGTYPE,
},
"referenceView": {
"reference.id": INTTYPE, # needed
"reference.accession": STRINGTYPE,
"reference.description": STRINGTYPE,
"reference.organism": STRINGTYPE,
"reference.standard": INTTYPE,
"translation.id": INTTYPE,
"molecule.id": INTTYPE,
"molecule.type": STRINGTYPE,
"molecule.accession": STRINGTYPE,
"molecule.symbol": STRINGTYPE,
"molecule.description": STRINGTYPE,
"molecule.length": INTTYPE,
"molecule.segment": INTTYPE,
"molecule.standard": INTTYPE,
"element.id": INTTYPE,
"element.type": STRINGTYPE, # needed
"element.accession": STRINGTYPE,
"element.symbol": STRINGTYPE, # needed gene name
"element.description": STRINGTYPE,
"element.start": INTTYPE, # needed = start gene name
"element.end": INTTYPE, # end gene cds
"element.strand": INTTYPE,
"element.sequence": STRINGTYPE,
"elempart.start ": INTTYPE,
"elempart.end ": INTTYPE,
"elempart.strand ": INTTYPE,
"elempart.segment ": INTTYPE,
},
}
needed_columns = {
"propertyView": [
"sample.id",
"sample.name",
"property.name",
"value_text",
"value_date",
"value_integer",
],
"variantView": [
"sample.id",
"sample.name",
"reference.id",
"reference.accession",
"variant.id",
# "variant.ref",
"variant.label",
# "variant.parent_id"
"element.type",
"element.symbol",
],
}
def get_database_connection(db_name: str):
"""
connect to SQL DB based on environment var DB_URL and given db_name
return: database connection
"""
# DB configuration
parsed_db_url = urlparse(DB_URL)
user = parsed_db_url.username
ip = parsed_db_url.hostname
pw = parsed_db_url.password
# port = parsed_db_url.port
return create_engine(f"mysql+pymysql://{user}:{pw}@{ip}/{db_name}")
class DataFrameLoader:
"""
connect to DB and loading of DB entires into panda dataframes
loaded are the column of tables (defined in table) -> defined in variable needed_columns
data types used for download from DB and reading from csv -> defined in variable column_dtypes
two different download funtions for test DB and normal DB
parallel loading of different tables (not for test DBs)
writes downloaded tables as csv to .cache (not for test DBs)
...
Attributes
----------
db_name : str
name of database to connect with
tables: list[str]
list of tables to download
needed_columns: dict
dict{table_name: list of needed columns for website}
column_dtypes: dict(dict)
dict{table_name: dict{column name: data type}}
"""
def __init__(self, db_name: str):
self.db_name = db_name
self.tables = tables
self.needed_columns = needed_columns
self.column_dtypes = column_dtypes
def define_sql_query_and_get_dtypes(self, table_name: str) -> (str, dict):
"""
:return: SQL query for table with selection of needed columns and added correct quoting
:return: dict for data types of selected columns
"""
db_connection = get_database_connection(self.db_name)
# we cannot use read_sql_table because it doesn't allow difining dtypes
columns = pd.read_sql_query(
f"SELECT * FROM {table_name} LIMIT 1;", con=db_connection
).columns
if table_name in self.needed_columns.keys():
columns = columns.intersection(self.needed_columns[table_name])
types = {
column: self.column_dtypes[table_name][column] for column in columns
}
# a '.' in the column names implies ``-quoting the column name for a mariadb-query
quoted_column_names = []
for column in columns:
if "." in column:
column = "`" + column + "`"
quoted_column_names.append(column)
queried_columns = ", ".join(quoted_column_names)
else:
types = {
column: self.column_dtypes[table_name][column] for column in columns
}
queried_columns = "*"
query = f"SELECT {queried_columns} FROM {table_name};"
return query, types
def load_db_from_sql(self, table_name: str) -> (str, dict):
"""
download table of DB and write .csv into .cache
:param table_name: name of the DB table to query
:return: (path to csv, dtypes dict {column_name: dtype (from column_dtypes)})
"""
# cpu_number= mp.current_process().name.split("-")[-1] # Get the CPU number
# print(cpu_number)
start = perf_counter()
db_connection = get_database_connection(self.db_name)
try:
query, types = self.define_sql_query_and_get_dtypes(table_name)
# we cannot use read_sql_table because it doesn't allow defining dtypes
path_to_csv = f".cache/{table_name}.csv"
if table_name == "variantView":
with open(path_to_csv, "w") as tmpfile:
outcsv = csv.writer(tmpfile, lineterminator="\n")
engine = db_connection
connection = engine.connect()
cursor = connection.execute(query)
headers = []
for columns in cursor.keys():
headers.append(columns)
# dump column titles
outcsv.writerows([headers])
# dump rows
outcsv.writerows(cursor.fetchall())
else:
df = pd.read_sql_query(
query,
con=db_connection,
dtype=types,
)
# FIXME: should put , doublequote=True, or
df.to_csv(path_to_csv, index=False)
# missing table
except exc.ProgrammingError:
print(f"table {table_name} not in database.")
print(f"Loading time {table_name}: {(perf_counter() - start):.4f} sec.")
return path_to_csv, types
def load_from_sql_db(self) -> dict:
# NOTE: WARN:
"""
Avoid shifting large amounts of data between processes.
multiprocessing.Pool relies on a locked buffer (an OS Pipe/CPU type.)
to distribute the tasks between the workers and retrieve their results.
If an object larger than the buffer is pushed trough the pipe,
there are chances the logic might hang. We can dump the job result to files
(e.g., using pickle) and return/send the filename.
We can prevent logic from getting stuck and pipe becomes a severe bottleneck.
(Hopefully notice speed improvements as well)
:return: df_dict {table_name: pandas dataframe}
"""
pool = mp.Pool(mp.cpu_count())
path_to_csv_types_list = pool.starmap(
self.load_db_from_sql, [[table] for table in self.tables]
)
pool.close() # tells the pool not to accept any new job.
pool.terminate()
pool.join() # tells the pool to wait until all jobs finished then exit
# blocking the parent process is just a side effect of what pool.join is doing.
# NOTE: HARD CODE
# read results back.
df_dict = {}
for path, types in path_to_csv_types_list:
df_dict[Path(path).stem] = pd.read_csv(path, dtype=types)
return df_dict
def load_db_from_test_db(self) -> dict:
"""
loading of test db without writing csv to cache
:return: df_dict {table_name: pandas dataframe}
"""
db_connection = get_database_connection(self.db_name)
df_dict = {}
for table in self.needed_columns.keys():
try:
query, types = self.define_sql_query_and_get_dtypes(table)
df = pd.read_sql_query(
sql=query,
con=db_connection,
dtype=types,
)
except exc.ProgrammingError:
print(f"table {table} not in database.")
df = pd.DataFrame()
df_dict[table] = df
return df_dict
def create_property_view(df: pd.DataFrame) -> pd.DataFrame:
"""
unstacking properties of propertyView:
creating new columns for different property.name values by following steps:
1. add values from value_date and value_integer to value_text column
if property.name = "COLLECTION_DATE", "RELEASE_DATE", "IMPORTED", "LENGTH"
2. unstacking property.name
3. if no COLLECTION_DATE -> fill COLLECTION_DATE with RELEASE_DATE,
delete row if both dates are not present
4. fill empty entries with "undefined
:param df: dataframe with columns
['sample.id', 'sample.name', 'property.name', 'value_integer', 'value_text', 'value_date']
:return: df with columns
['sample.id', 'sample.name', 'COLLECTION_DATE', 'COUNTRY', 'GENOME_COMPLETENESS',
'GEO_LOCATION', 'HOST', 'IMPORTED', 'ISOLATE', 'LENGTH', 'RELEASE_DATE', 'SEQ_TECH']
"""
# all dates and integer values into value_date column for unstacking
df["value_text"] = df.apply(
lambda row: row["value_date"]
if row["property.name"] in ["COLLECTION_DATE", "RELEASE_DATE", "IMPORTED"]
else row["value_text"],
axis=1,
)
df = df.drop(columns=["value_date"], axis=1)
df["value_text"] = df.apply(
lambda row: row["value_integer"]
if row["property.name"] in ["LENGTH"]
else row["value_text"],
axis=1,
)
df = df.drop(columns=["value_integer"], axis=1)
cols = ["sample.id", "sample.name"]
df = df.set_index(["property.name"] + cols).unstack("property.name")
df = df.value_text.rename_axis([None], axis=1).reset_index()
df["COLLECTION_DATE"].fillna(df["RELEASE_DATE"], inplace=True)
# delete entries without collection and release date else nan errors:
df = df.dropna(subset=["COLLECTION_DATE"])
# delete entries without collection and release date else nan errors:
df = df.dropna(subset=["COLLECTION_DATE"])
df["COLLECTION_DATE"] = df["COLLECTION_DATE"].apply(
lambda d: datetime.strptime(d, "%Y-%m-%d").date()
)
df["SEQ_TECH"] = df["SEQ_TECH"].replace([np.nan, ""], "undefined")
df["COUNTRY"] = df["COUNTRY"].replace([np.nan, ""], "undefined")
df["LENGTH"] = df["LENGTH"].astype(float).astype("Int64")
# print(f"time pre-processing PropertyView final: {(perf_counter()-start)} sec.")
# print(tabulate(df[0:10], headers='keys', tablefmt='psql'))
return df
def create_variant_view(df: pd.DataFrame, propertyView_samples: set) -> pd.DataFrame:
"""
change dtypes of "reference.id" and "variant.id" to int
remove entries with sample ids not contained in propertyView
:return: variantView
"""
df["reference.id"] = df["reference.id"].astype(float).astype("Int64")
df["variant.id"] = df["variant.id"].astype(float).astype("Int64")
df = df[df["sample.id"].isin(propertyView_samples)]
return df
def remove_x_appearing_variants(world_df: pd.DataFrame, nb: int = 1) -> pd.DataFrame:
"""
currently not used
function to remove all variants, that are present <= given number nb
:return: world df without variants, that appear maximum nb-times
"""
df2 = world_df.groupby(["gene:variant"]).sum(numeric_only=True).reset_index()
variants_to_remove = df2[df2["number_sequences"] <= nb]["gene:variant"].tolist()
if variants_to_remove:
world_df = world_df[~world_df["gene:variant"].isin(variants_to_remove)]
world_df = world_df[~world_df["gene:variant"].isin(variants_to_remove)]
return world_df
def create_world_map_df(
variantView: pd.DataFrame, propertyView: pd.DataFrame
) -> pd.DataFrame:
"""
created df used for explorer tool by following steps:
1. merge propertyView and variatView df
2. concat all strain_ids into one comma separated string list if they have the same
location_ID, date, amino_acid-variant --> new column sample_id_list
3. count samples with same properties --> new column number_sequences
4. combine element.symbol:variant.label to new column gene:variant
:return: world_df with columns []"COUNTRY", "COLLECTION_DATE", "SEQ_TECH", "sample_id_list",
"variant.label", "number_sequences", "element.symbol", "gene:variant"]
"""
df = pd.merge(
variantView[["sample.id", "variant.label", "element.symbol"]],
propertyView[["sample.id", "COUNTRY", "COLLECTION_DATE", "SEQ_TECH"]],
how="inner",
on="sample.id",
)[
[
"sample.id",
"COUNTRY",
"COLLECTION_DATE",
"variant.label",
"SEQ_TECH",
"element.symbol",
]
]
# same location_ID, date, amino_acid --> concat all strain_ids into comma separated string list
df = (
df.groupby(
[
"COUNTRY",
"COLLECTION_DATE",
"variant.label",
"SEQ_TECH",
"element.symbol",
],
dropna=False,
)["sample.id"]
.apply(lambda x: ",".join([str(y) for y in set(x)]))
.reset_index(name="sample_id_list")
)
# add sequence count
df["number_sequences"] = df["sample_id_list"].apply(lambda x: len(x.split(",")))
df["gene:variant"] = (
df["element.symbol"].astype(str) + ":" + df["variant.label"].astype(str)
)
df = df[
[
"COUNTRY",
"COLLECTION_DATE",
"SEQ_TECH",
"sample_id_list",
"variant.label",
"number_sequences",
"element.symbol",
"gene:variant",
]
]
# df = remove_x_appearing_variants(df, 1)
return df
def remove_seq_errors_and_add_gene_var_column(
variantView: pd.DataFrame, reference_id: int, seq_type: str
) -> pd.DataFrame:
"""
remove sequencing errors from variantView table:
X for amino acid variants, N for nucleotide variants
split variantView table based on reference_id and element.type into multiple tables
combine element.symbol and variant.label to new column gene:variant
:param variantView: complete or partial variantView dataframe
:param reference_id: id of reference sequence
:param seq_type: "cds" or "source"
:return: variantView df
for nucleotide variants with columns:
['sample.id', 'sample.name', 'reference.id', 'reference.accession','element.symbol',
'element.type', 'variant.id', 'variant.label']
for protein variants:
additional column 'gene:variant'
"""
df = variantView[
(variantView["reference.id"] == reference_id)
& (variantView["element.type"] == seq_type)
].reset_index(drop=True)
if seq_type == "source":
# unknown_nt = ['N', 'V', 'D', 'H', 'B', 'K', 'M', 'S', 'W']
df = df[~df["variant.label"].str.contains("N")]
# B, Z, J not in DB, X always at the end, all undefined nucleotides translated to X
elif seq_type == "cds":
df = df[~df["variant.label"].str.endswith("X")]
df["gene:variant"] = (
df["element.symbol"].astype(str) + ":" + df["variant.label"].astype(str)
)
return df
def create_empty_processed_df(reference_ids: list[int]) -> dict:
"""
create needed structure of processed_df_dict
"""
processed_df_dict = defaultdict(dict)
for completeness in ["complete", "partial"]:
processed_df_dict["variantView"][completeness] = {}
processed_df_dict["world_map"][completeness] = {}
for reference_id in reference_ids:
processed_df_dict["variantView"][completeness][reference_id] = {}
return processed_df_dict
def load_all_sql_files( # noqa: C901
db_name: str = None, test_db: bool = False
) -> dict:
"""
load SQL DB into dict of pandas dfs
to handle big db size: DB tables are splitted into multiple tables in processed_df_dict:
processed_df_dict["propertyView"]["complete" OR "partial"]
processed_df_dict["variantView"]["complete" OR "partial"][reference_id][seq_type]
for website running db_name is parsed from env var DB_URL, for test DB params are used
:param db_name: for test databases name is given
:param test_db: for tests databases test_db=True
:return: complete pre processed DB dictionary
"""
if not db_name:
db_name = urlparse(DB_URL).path.replace("/", "")
path_to_cache = CACHE_DIR
loader = DataFrameLoader(db_name)
# NOTE:
# TODO automated update of pickle file with new database
# 1. Using Pickle should only be used on 100% trusted data
# 2. msgpack can be other options.
# check if df_dict is load or not?
if redis_manager and redis_manager.exists("df_dict") and not test_db:
# if True:
print("Load data from cache...")
# df_dict = decompress_pickle(os.path.join(CACHE_DIR,"df_dict.pbz2"))
# df_dict = pickle.loads(redis_manager.get("df_dict"))
processed_df_dict = load_Cpickle(os.path.join(path_to_cache, "df_dict.pickle"))
else:
if test_db:
print("Load data from test database")
loaded_df_dict = loader.load_db_from_test_db()
else:
print("Load data from database...")
loaded_df_dict = loader.load_from_sql_db()
# df preprocessing
print("Data preprocessing...")
# TODO why NaN in reference --> database error?
reference_ids = [
int(ref)
for ref in loaded_df_dict["variantView"]["reference.id"].dropna().unique()
]
processed_df_dict = create_empty_processed_df(reference_ids)
# propertyView
processed_propertyView = create_property_view(loaded_df_dict["propertyView"])
for completeness in ["complete", "partial"]:
processed_df_dict["propertyView"][completeness] = processed_propertyView[
processed_propertyView["GENOME_COMPLETENESS"] == completeness
].reset_index(drop=True)
del processed_propertyView
del loaded_df_dict["propertyView"]
# variantView
for completeness in ["complete", "partial"]:
processed_variantView = create_variant_view(
loaded_df_dict["variantView"],
set(processed_df_dict["propertyView"][completeness]["sample.id"]),
)
for reference_id in reference_ids:
for seq_type in ["source", "cds"]:
processed_df_dict["variantView"][completeness][reference_id][
seq_type
] = remove_seq_errors_and_add_gene_var_column(
processed_variantView, reference_id, seq_type
)
del processed_variantView
del loaded_df_dict["variantView"]
# worldMap
for completeness in ["complete", "partial"]:
for reference_id in reference_ids:
processed_df_dict["world_map"][completeness][
reference_id
] = create_world_map_df(
processed_df_dict["variantView"][completeness][reference_id]["cds"],
processed_df_dict["propertyView"][completeness],
)
if redis_manager:
# NOTE: set pickle cache, however the limitation of redis
# is.... the tool can store data size up to 512MB
# 1 sec
# redis_manager.set("df_dict", pickle.dumps(df_dict), ex=3600 * 23)
# HACK: 1. SpaceSaving, so we use the another method, using Cpickle + BZ2 compression.
# WARN: the performance is limited by compression algorithm and stroage I/O type.
# 40 secs, 40 MB
# redis_manager.set("df_dict", "1", ex=3600 * 23)
# compressed_pickle(os.path.join(CACHE_DIR,"df_dict.pbz2"),df_dict)
# HACK: 2. Using Cpickle only
# 30 secs, 419 MB
if not test_db:
print("Create a new cache")
write_Cpickle(
os.path.join(path_to_cache, "df_dict.pickle"), processed_df_dict
)
redis_manager.set("df_dict", 1, ex=3600 * 23)
# df_dict["propertyView"].to_pickle(".cache/propertyView.pkl")
# df_dict["variantView"].to_pickle(".cache/variantView.pkl")
# df_dict["referenceView"].to_pickle(".cache/referenceView.pkl")
return processed_df_dict
if __name__ == "__main__":
print("Build a new cache")
load_all_sql_files()
create_snp_table()
calculate_tri_mutation_sig()
calculate_mutation_sig()
print("--- Complete ----")