-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf_ssmctb.py
168 lines (139 loc) · 6.13 KB
/
tf_ssmctb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import tensorflow as tf
from tensorflow.keras.layers import Dense, LayerNormalization, GlobalAveragePooling2D
class MultiHeadSelfAttention(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads=8):
super(MultiHeadSelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
if embed_dim % num_heads != 0:
raise ValueError(
f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"
)
self.projection_dim = embed_dim // num_heads
# attention takes three inputs: queries, keys, and values,
self.query_dense = Dense(embed_dim)
self.key_dense = Dense(embed_dim)
self.value_dense = Dense(embed_dim)
self.combine_heads = Dense(embed_dim)
def attention(self, query, key, value):
score = tf.matmul(query, key, transpose_b=True)
dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1)
output = tf.matmul(weights, value)
return output, weights
def separate_heads(self, x, batch_size):
x = tf.reshape(
x, (batch_size, -1, self.num_heads, self.projection_dim)
)
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs):
batch_size = tf.shape(inputs)[0]
query = self.query_dense(inputs)
key = self.key_dense(inputs)
value = self.value_dense(inputs)
query = self.separate_heads(query, batch_size)
key = self.separate_heads(key, batch_size)
value = self.separate_heads(value, batch_size)
attention, weights = self.attention(query, key, value)
attention = tf.transpose(attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(
attention, (batch_size, -1, self.embed_dim)
)
output = self.combine_heads(concat_attention)
return output
class TransformerBlock(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim):
super(TransformerBlock, self).__init__()
# Transformer block multi-head Self Attention
self.multiheadselfattention = MultiHeadSelfAttention(embed_dim, num_heads)
self.ffn = tf.keras.Sequential(
[Dense(ff_dim, activation="relu"), Dense(embed_dim)]
)
self.layernorm1 = LayerNormalization(epsilon=1e-6)
self.layernorm2 = LayerNormalization(epsilon=1e-6)
def call(self, inputs):
out1 = self.layernorm1(inputs)
attention_output = self.multiheadselfattention(out1)
out2 = self.layernorm1(inputs + attention_output)
ffn_output = self.ffn(out2)
return self.layernorm2(out2 + ffn_output)
class ChannelWiseTransformerBlock(tf.keras.layers.Layer):
def __init__(
self,
num_patches,
num_layers, # depth
num_heads,
mlp_dim,
d_model # dim head
):
super(ChannelWiseTransformerBlock, self).__init__()
# create patches based on patch_size
# image_size/patch_size==0
self.avg_pool = GlobalAveragePooling2D()
self.d_model = d_model
self.patch_proj = self.create_postional_embedding(num_patches, d_model)
self.enc_layers = [
TransformerBlock(d_model, num_heads, mlp_dim)
for _ in range(num_layers)
]
def create_postional_embedding(self, num_patches, d_model):
self.pos_emb = self.add_weight("pos_emb", shape=(1, num_patches, d_model))
return Dense(d_model)
def call(self, input):
x = self.avg_pool(input)
x = tf.expand_dims(x, -1)
x = self.patch_proj(x)
x = x + self.pos_emb
for layer in self.enc_layers:
x = layer(x)
x = tf.reduce_mean(x, -1)
x = tf.keras.activations.sigmoid(x)
x = tf.expand_dims(x, 1)
x = tf.expand_dims(x, 1)
x = x * input
return x
def masked_conv(input, kernel_dim, dilation, filters):
'''
input: The input data
name: The name of the layer in the graph
kernel_dim: The dimension of the sub-kernels ' k' ' from the paper
dilation: The dilation dimension 'd' from the paper
filters: The number of filter at the output (usually the same with the number of filter from the input)
reduction_ratio: The reduction ratio for the SE block ('r' from the paper)
'''
pad = kernel_dim + dilation
border_input = kernel_dim + 2 * dilation + 1
sspcab_input = tf.pad(input, tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]), "REFLECT")
sspcab_1 = tf.layers.conv2d(inputs=sspcab_input[:, :-border_input, :-border_input, :],
filters=filters, kernel_size=kernel_dim, activation=tf.nn.relu)
sspcab_3 = tf.layers.conv2d(inputs=sspcab_input[:, border_input:, :-border_input, :],
filters=filters, kernel_size=kernel_dim, activation=tf.nn.relu)
sspcab_7 = tf.layers.conv2d(inputs=sspcab_input[:, :-border_input, border_input:, :],
filters=filters, kernel_size=kernel_dim, activation=tf.nn.relu)
sspcab_9 = tf.layers.conv2d(inputs=sspcab_input[:, border_input:, border_input:, :],
filters=filters, kernel_size=kernel_dim, activation=tf.nn.relu)
sspcab_out = sspcab_1 + sspcab_3 + sspcab_7 + sspcab_9
return sspcab_out
def SSMCTB(input, name, kernel_dim, dilation, filters, cw_transformer):
with tf.variable_scope('decoder/SSMCTB' + name) as scope:
sspcab = masked_conv(input, kernel_dim=kernel_dim, dilation=dilation, filters=filters)
tr_out = cw_transformer(sspcab)
return tr_out
# model = VisionTransformer(
# num_patches=64,
# patch_size=1,
# num_layers=4,
# d_model=128,
# num_heads=4,
# mlp_dim=128,
# dropout=0.1,
# )
# img = tf.random.normal(shape=[1, 8, 8, 64])
# model(img)
#
# model.compile(
# loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
# optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
# metrics=["accuracy"],
# )