You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
TEST:
EVAL_PERIOD: 60 # We didn't provide eval dataset
IMS_PER_BATCH: 256
OUTPUT_DIR: logs/AICUP_115/bagtricks_R50-ibn
[05/07 13:18:34 fastreid]: Running with full config:
CUDNN_BENCHMARK: True
DATALOADER:
NUM_INSTANCE: 4
NUM_WORKERS: 8
SAMPLER_TRAIN: NaiveIdentitySampler
SET_WEIGHT: []
DATASETS:
COMBINEALL: False
NAMES: ('AICUP',)
TESTS: ('AICUP',)
INPUT:
AFFINE:
ENABLED: False
AUGMIX:
ENABLED: False
PROB: 0.0
AUTOAUG:
ENABLED: False
PROB: 0.0
CJ:
BRIGHTNESS: 0.15
CONTRAST: 0.15
ENABLED: False
HUE: 0.1
PROB: 0.5
SATURATION: 0.1
CROP:
ENABLED: False
RATIO: [0.75, 1.3333333333333333]
SCALE: [0.16, 1]
SIZE: [224, 224]
FLIP:
ENABLED: True
PROB: 0.5
PADDING:
ENABLED: True
MODE: constant
SIZE: 10
REA:
ENABLED: True
PROB: 0.5
VALUE: [123.675, 116.28, 103.53]
RPT:
ENABLED: False
PROB: 0.5
SIZE_TEST: [256, 256]
SIZE_TRAIN: [256, 256]
KD:
EMA:
ENABLED: False
MOMENTUM: 0.999
MODEL_CONFIG: []
MODEL_WEIGHTS: []
MODEL:
BACKBONE:
ATT_DROP_RATE: 0.0
DEPTH: 50x
DROP_PATH_RATIO: 0.1
DROP_RATIO: 0.0
FEAT_DIM: 2048
LAST_STRIDE: 1
NAME: build_resnet_backbone
NORM: BN
PRETRAIN: True
PRETRAIN_PATH:
SIE_COE: 3.0
STRIDE_SIZE: (16, 16)
WITH_IBN: True
WITH_NL: False
WITH_SE: False
DEVICE: cuda:0
FREEZE_LAYERS: []
HEADS:
CLS_LAYER: Linear
EMBEDDING_DIM: 0
MARGIN: 0.0
NAME: EmbeddingHead
NECK_FEAT: before
NORM: BN
NUM_CLASSES: 0
POOL_LAYER: GeneralizedMeanPooling
SCALE: 1
WITH_BNNECK: True
LOSSES:
CE:
ALPHA: 0.2
EPSILON: 0.1
SCALE: 1.0
CIRCLE:
GAMMA: 128
MARGIN: 0.25
SCALE: 1.0
COSFACE:
GAMMA: 128
MARGIN: 0.25
SCALE: 1.0
FL:
ALPHA: 0.25
GAMMA: 2
SCALE: 1.0
NAME: ('CrossEntropyLoss', 'TripletLoss')
TRI:
HARD_MINING: False
MARGIN: 0.0
NORM_FEAT: False
SCALE: 1.0
META_ARCHITECTURE: Baseline
PIXEL_MEAN: [123.675, 116.28, 103.53]
PIXEL_STD: [58.395, 57.120000000000005, 57.375]
QUEUE_SIZE: 8192
WEIGHTS:
OUTPUT_DIR: logs/AICUP_115/bagtricks_R50-ibn
SOLVER:
AMP:
ENABLED: True
BASE_LR: 0.00035
BIAS_LR_FACTOR: 1.0
CHECKPOINT_PERIOD: 1
CLIP_GRADIENTS:
CLIP_TYPE: norm
CLIP_VALUE: 5.0
ENABLED: False
NORM_TYPE: 2.0
DELAY_EPOCHS: 0
ETA_MIN_LR: 1e-07
FREEZE_ITERS: 0
GAMMA: 0.1
HEADS_LR_FACTOR: 1.0
IMS_PER_BATCH: 32
MAX_EPOCH: 60
MOMENTUM: 0.9
NESTEROV: False
OPT: Adam
SCHED: MultiStepLR
STEPS: [30, 50]
WARMUP_FACTOR: 0.1
WARMUP_ITERS: 2000
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0005
WEIGHT_DECAY_BIAS: 0.0005
WEIGHT_DECAY_NORM: 0.0005
TEST:
AQE:
ALPHA: 3.0
ENABLED: False
QE_K: 5
QE_TIME: 1
EVAL_PERIOD: 60
FLIP:
ENABLED: False
IMS_PER_BATCH: 256
METRIC: cosine
PRECISE_BN:
DATASET: Market1501
ENABLED: False
NUM_ITER: 300
RERANK:
ENABLED: False
K1: 20
K2: 6
LAMBDA: 0.3
ROC:
ENABLED: False
[05/07 13:18:34 fastreid]: Full config saved to C:\Users\user\AICUP_Baseline_BoT-SORT\logs\AICUP_115\bagtricks_R50-ibn\config.yaml
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
start epoch 0
Exception during training:
Traceback (most recent call last):
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\train_loop.py", line 146, in train
self.run_step()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\defaults.py", line 359, in run_step
self._trainer.run_step()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\train_loop.py", line 354, in run_step
self.grad_scaler.step(self.optimizer)
File "C:\Users\user\anaconda3\envs\botsort\lib\site-packages\torch\amp\grad_scaler.py", line 449, in step
assert (
AssertionError: No inf checks were recorded for this optimizer.
Traceback (most recent call last):
File "C:\Users\user\AICUP_Baseline_BoT-SORT\fast_reid\tools\train_net.py", line 54, in
launch(
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\launch.py", line 71, in launch
main_func(*args)
File "C:\Users\user\AICUP_Baseline_BoT-SORT\fast_reid\tools\train_net.py", line 47, in main
return trainer.train()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\defaults.py", line 350, in train
super().train(self.start_epoch, self.max_epoch, self.iters_per_epoch)
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\train_loop.py", line 146, in train
self.run_step()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\defaults.py", line 359, in run_step
self._trainer.run_step()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\train_loop.py", line 354, in run_step
self.grad_scaler.step(self.optimizer)
File "C:\Users\user\anaconda3\envs\botsort\lib\site-packages\torch\amp\grad_scaler.py", line 449, in step
assert (
AssertionError: No inf checks were recorded for this optimizer.
No inf checks were recorded for this optimizer. 這該如何解決
The text was updated successfully, but these errors were encountered:
(botsort) PS C:\Users\user\AICUP_Baseline_BoT-SORT>
UP\bagtricks_R50-ibn.yml MODEL.DEVICE "cuda:0"
Command Line Args: Namespace(config_file='C:\Users\user\AICUP_Baseline_BoT-SORT\fast_reid\configs\AICUP\bagtricks_R50-ibn.yml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49153', opts=['MODEL.DEVICE', 'cuda:0'])
[05/07 13:18:32 fastreid]: Rank of current process: 0. World size: 1
[05/07 13:18:34 fastreid]: Environment info:
sys.platform win32
Python 3.9.19 (main, Mar 21 2024, 17:21:27) [MSC v.1916 64 bit (AMD64)]
numpy 1.26.4
fastreid failed to import
FASTREID_ENV_MODULE
PyTorch 2.3.0+cu118 @C:\Users\user\anaconda3\envs\botsort\lib\site-packages\torch
PyTorch debug build False
GPU available True
GPU 0 NVIDIA GeForce GTX 1650
CUDA_HOME C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4
Pillow 10.3.0
torchvision 0.18.0+cpu @C:\Users\user\anaconda3\envs\botsort\lib\site-packages\torchvision
torchvision arch flags C:\Users\user\anaconda3\envs\botsort\lib\site-packages\torchvision_C.pyd; cannot find cuobjdump
cv2 4.9.0
PyTorch built with:
-DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.3.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
[05/07 13:18:34 fastreid]: Command line arguments: Namespace(config_file='C:\Users\user\AICUP_Baseline_BoT-SORT\fast_reid\configs\AICUP\bagtricks_R50-ibn.yml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49153', opts=['MODEL.DEVICE', 'cuda:0'])
[05/07 13:18:34 fastreid]: Contents of args.config_file=C:\Users\user\AICUP_Baseline_BoT-SORT\fast_reid\configs\AICUP\bagtricks_R50-ibn.yml:
BASE: ../Base-bagtricks.yml
INPUT:
SIZE_TRAIN: [256, 256]
SIZE_TEST: [256, 256]
MODEL:
BACKBONE:
WITH_IBN: True
HEADS:
POOL_LAYER: GeneralizedMeanPooling
LOSSES:
TRI:
HARD_MINING: False
MARGIN: 0.0
DATASETS:
NAMES: ("AICUP",)
TESTS: ("AICUP",)
SOLVER:
BIAS_LR_FACTOR: 1.
IMS_PER_BATCH: 32
MAX_EPOCH: 60
STEPS: [30, 50]
WARMUP_ITERS: 2000
CHECKPOINT_PERIOD: 1
TEST:
EVAL_PERIOD: 60 # We didn't provide eval dataset
IMS_PER_BATCH: 256
OUTPUT_DIR: logs/AICUP_115/bagtricks_R50-ibn
[05/07 13:18:34 fastreid]: Running with full config:
CUDNN_BENCHMARK: True
DATALOADER:
NUM_INSTANCE: 4
NUM_WORKERS: 8
SAMPLER_TRAIN: NaiveIdentitySampler
SET_WEIGHT: []
DATASETS:
COMBINEALL: False
NAMES: ('AICUP',)
TESTS: ('AICUP',)
INPUT:
AFFINE:
ENABLED: False
AUGMIX:
ENABLED: False
PROB: 0.0
AUTOAUG:
ENABLED: False
PROB: 0.0
CJ:
BRIGHTNESS: 0.15
CONTRAST: 0.15
ENABLED: False
HUE: 0.1
PROB: 0.5
SATURATION: 0.1
CROP:
ENABLED: False
RATIO: [0.75, 1.3333333333333333]
SCALE: [0.16, 1]
SIZE: [224, 224]
FLIP:
ENABLED: True
PROB: 0.5
PADDING:
ENABLED: True
MODE: constant
SIZE: 10
REA:
ENABLED: True
PROB: 0.5
VALUE: [123.675, 116.28, 103.53]
RPT:
ENABLED: False
PROB: 0.5
SIZE_TEST: [256, 256]
SIZE_TRAIN: [256, 256]
KD:
EMA:
ENABLED: False
MOMENTUM: 0.999
MODEL_CONFIG: []
MODEL_WEIGHTS: []
MODEL:
BACKBONE:
ATT_DROP_RATE: 0.0
DEPTH: 50x
DROP_PATH_RATIO: 0.1
DROP_RATIO: 0.0
FEAT_DIM: 2048
LAST_STRIDE: 1
NAME: build_resnet_backbone
NORM: BN
PRETRAIN: True
PRETRAIN_PATH:
SIE_COE: 3.0
STRIDE_SIZE: (16, 16)
WITH_IBN: True
WITH_NL: False
WITH_SE: False
DEVICE: cuda:0
FREEZE_LAYERS: []
HEADS:
CLS_LAYER: Linear
EMBEDDING_DIM: 0
MARGIN: 0.0
NAME: EmbeddingHead
NECK_FEAT: before
NORM: BN
NUM_CLASSES: 0
POOL_LAYER: GeneralizedMeanPooling
SCALE: 1
WITH_BNNECK: True
LOSSES:
CE:
ALPHA: 0.2
EPSILON: 0.1
SCALE: 1.0
CIRCLE:
GAMMA: 128
MARGIN: 0.25
SCALE: 1.0
COSFACE:
GAMMA: 128
MARGIN: 0.25
SCALE: 1.0
FL:
ALPHA: 0.25
GAMMA: 2
SCALE: 1.0
NAME: ('CrossEntropyLoss', 'TripletLoss')
TRI:
HARD_MINING: False
MARGIN: 0.0
NORM_FEAT: False
SCALE: 1.0
META_ARCHITECTURE: Baseline
PIXEL_MEAN: [123.675, 116.28, 103.53]
PIXEL_STD: [58.395, 57.120000000000005, 57.375]
QUEUE_SIZE: 8192
WEIGHTS:
OUTPUT_DIR: logs/AICUP_115/bagtricks_R50-ibn
SOLVER:
AMP:
ENABLED: True
BASE_LR: 0.00035
BIAS_LR_FACTOR: 1.0
CHECKPOINT_PERIOD: 1
CLIP_GRADIENTS:
CLIP_TYPE: norm
CLIP_VALUE: 5.0
ENABLED: False
NORM_TYPE: 2.0
DELAY_EPOCHS: 0
ETA_MIN_LR: 1e-07
FREEZE_ITERS: 0
GAMMA: 0.1
HEADS_LR_FACTOR: 1.0
IMS_PER_BATCH: 32
MAX_EPOCH: 60
MOMENTUM: 0.9
NESTEROV: False
OPT: Adam
SCHED: MultiStepLR
STEPS: [30, 50]
WARMUP_FACTOR: 0.1
WARMUP_ITERS: 2000
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0005
WEIGHT_DECAY_BIAS: 0.0005
WEIGHT_DECAY_NORM: 0.0005
TEST:
AQE:
ALPHA: 3.0
ENABLED: False
QE_K: 5
QE_TIME: 1
EVAL_PERIOD: 60
FLIP:
ENABLED: False
IMS_PER_BATCH: 256
METRIC: cosine
PRECISE_BN:
DATASET: Market1501
ENABLED: False
NUM_ITER: 300
RERANK:
ENABLED: False
K1: 20
K2: 6
LAMBDA: 0.3
ROC:
ENABLED: False
[05/07 13:18:34 fastreid]: Full config saved to C:\Users\user\AICUP_Baseline_BoT-SORT\logs\AICUP_115\bagtricks_R50-ibn\config.yaml
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\data\transforms\functional.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
start epoch 0
Exception during training:
Traceback (most recent call last):
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\train_loop.py", line 146, in train
self.run_step()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\defaults.py", line 359, in run_step
self._trainer.run_step()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\train_loop.py", line 354, in run_step
self.grad_scaler.step(self.optimizer)
File "C:\Users\user\anaconda3\envs\botsort\lib\site-packages\torch\amp\grad_scaler.py", line 449, in step
assert (
AssertionError: No inf checks were recorded for this optimizer.
Traceback (most recent call last):
File "C:\Users\user\AICUP_Baseline_BoT-SORT\fast_reid\tools\train_net.py", line 54, in
launch(
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\launch.py", line 71, in launch
main_func(*args)
File "C:\Users\user\AICUP_Baseline_BoT-SORT\fast_reid\tools\train_net.py", line 47, in main
return trainer.train()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\defaults.py", line 350, in train
super().train(self.start_epoch, self.max_epoch, self.iters_per_epoch)
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\train_loop.py", line 146, in train
self.run_step()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\defaults.py", line 359, in run_step
self._trainer.run_step()
File "C:\Users\user\AICUP_Baseline_BoT-SORT.\fast_reid\fastreid\engine\train_loop.py", line 354, in run_step
self.grad_scaler.step(self.optimizer)
File "C:\Users\user\anaconda3\envs\botsort\lib\site-packages\torch\amp\grad_scaler.py", line 449, in step
assert (
AssertionError: No inf checks were recorded for this optimizer.
No inf checks were recorded for this optimizer. 這該如何解決
The text was updated successfully, but these errors were encountered: