forked from coreylynch/async-rl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathasync_dqn.py
310 lines (264 loc) · 12.7 KB
/
async_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
from skimage.transform import resize
from skimage.color import rgb2gray
from atari_environment import AtariEnvironment
import threading
import tensorflow as tf
import sys
import random
import numpy as np
import time
import gym
from keras import backend as K
from model import build_network
from keras import backend as K
flags = tf.app.flags
flags.DEFINE_string('experiment', 'dqn_breakout', 'Name of the current experiment')
flags.DEFINE_string('game', 'Breakout-v0', 'Name of the atari game to play. Full list here: https://gym.openai.com/envs#atari')
flags.DEFINE_integer('num_concurrent', 8, 'Number of concurrent actor-learner threads to use during training.')
flags.DEFINE_integer('tmax', 80000000, 'Number of training timesteps.')
flags.DEFINE_integer('resized_width', 84, 'Scale screen to this width.')
flags.DEFINE_integer('resized_height', 84, 'Scale screen to this height.')
flags.DEFINE_integer('agent_history_length', 4, 'Use this number of recent screens as the environment state.')
flags.DEFINE_integer('network_update_frequency', 32, 'Frequency with which each actor learner thread does an async gradient update')
flags.DEFINE_integer('target_network_update_frequency', 10000, 'Reset the target network every n timesteps')
flags.DEFINE_float('learning_rate', 0.0001, 'Initial learning rate.')
flags.DEFINE_float('gamma', 0.99, 'Reward discount rate.')
flags.DEFINE_integer('anneal_epsilon_timesteps', 1000000, 'Number of timesteps to anneal epsilon.')
flags.DEFINE_string('summary_dir', '/tmp/summaries', 'Directory for storing tensorboard summaries')
flags.DEFINE_string('checkpoint_dir', '/tmp/checkpoints', 'Directory for storing model checkpoints')
flags.DEFINE_integer('summary_interval', 5,
'Save training summary to file every n seconds (rounded '
'up to statistics interval.')
flags.DEFINE_integer('checkpoint_interval', 600,
'Checkpoint the model (i.e. save the parameters) every n '
'seconds (rounded up to statistics interval.')
flags.DEFINE_boolean('show_training', True, 'If true, have gym render evironments during training')
flags.DEFINE_boolean('testing', False, 'If true, run gym evaluation')
flags.DEFINE_string('checkpoint_path', 'path/to/recent.ckpt', 'Path to recent checkpoint to use for evaluation')
flags.DEFINE_string('eval_dir', '/tmp/', 'Directory to store gym evaluation')
flags.DEFINE_integer('num_eval_episodes', 100, 'Number of episodes to run gym evaluation.')
FLAGS = flags.FLAGS
T = 0
TMAX = FLAGS.tmax
def sample_final_epsilon():
"""
Sample a final epsilon value to anneal towards from a distribution.
These values are specified in section 5.1 of http://arxiv.org/pdf/1602.01783v1.pdf
"""
final_epsilons = np.array([.1,.01,.5])
probabilities = np.array([0.4,0.3,0.3])
return np.random.choice(final_epsilons, 1, p=list(probabilities))[0]
def actor_learner_thread(thread_id, env, session, graph_ops, num_actions, summary_ops, saver):
"""
Actor-learner thread implementing asynchronous one-step Q-learning, as specified
in algorithm 1 here: http://arxiv.org/pdf/1602.01783v1.pdf.
"""
global TMAX, T
# Unpack graph ops
s = graph_ops["s"]
q_values = graph_ops["q_values"]
st = graph_ops["st"]
target_q_values = graph_ops["target_q_values"]
reset_target_network_params = graph_ops["reset_target_network_params"]
a = graph_ops["a"]
y = graph_ops["y"]
grad_update = graph_ops["grad_update"]
summary_placeholders, update_ops, summary_op = summary_ops
# Wrap env with AtariEnvironment helper class
env = AtariEnvironment(gym_env=env, resized_width=FLAGS.resized_width, resized_height=FLAGS.resized_height, agent_history_length=FLAGS.agent_history_length)
# Initialize network gradients
s_batch = []
a_batch = []
y_batch = []
final_epsilon = sample_final_epsilon()
initial_epsilon = 1.0
epsilon = 1.0
print "Starting thread ", thread_id, "with final epsilon ", final_epsilon
time.sleep(3*thread_id)
t = 0
while T < TMAX:
# Get initial game observation
s_t = env.get_initial_state()
terminal = False
# Set up per-episode counters
ep_reward = 0
episode_ave_max_q = 0
ep_t = 0
while True:
# Forward the deep q network, get Q(s,a) values
readout_t = q_values.eval(session = session, feed_dict = {s : [s_t]})
# Choose next action based on e-greedy policy
a_t = np.zeros([num_actions])
action_index = 0
if random.random() <= epsilon:
action_index = random.randrange(num_actions)
else:
action_index = np.argmax(readout_t)
a_t[action_index] = 1
# Scale down epsilon
if epsilon > final_epsilon:
epsilon -= (initial_epsilon - final_epsilon) / FLAGS.anneal_epsilon_timesteps
# Gym excecutes action in game environment on behalf of actor-learner
s_t1, r_t, terminal, info = env.step(action_index)
# Accumulate gradients
readout_j1 = target_q_values.eval(session = session, feed_dict = {st : [s_t1]})
clipped_r_t = np.clip(r_t, -1, 1)
if terminal:
y_batch.append(clipped_r_t)
else:
y_batch.append(clipped_r_t + FLAGS.gamma * np.max(readout_j1))
a_batch.append(a_t)
s_batch.append(s_t)
# Update the state and counters
s_t = s_t1
T += 1
t += 1
ep_t += 1
ep_reward += r_t
episode_ave_max_q += np.max(readout_t)
# Optionally update target network
if T % FLAGS.target_network_update_frequency == 0:
session.run(reset_target_network_params)
# Optionally update online network
if t % FLAGS.network_update_frequency == 0 or terminal:
if s_batch:
session.run(grad_update, feed_dict = {y : y_batch,
a : a_batch,
s : s_batch})
# Clear gradients
s_batch = []
a_batch = []
y_batch = []
# Save model progress
if t % FLAGS.checkpoint_interval == 0:
saver.save(session, FLAGS.checkpoint_dir+"/"+FLAGS.experiment+".ckpt", global_step = t)
# Print end of episode stats
if terminal:
stats = [ep_reward, episode_ave_max_q/float(ep_t), epsilon]
for i in range(len(stats)):
session.run(update_ops[i], feed_dict={summary_placeholders[i]:float(stats[i])})
print "THREAD:", thread_id, "/ TIME", T, "/ TIMESTEP", t, "/ EPSILON", epsilon, "/ REWARD", ep_reward, "/ Q_MAX %.4f" % (episode_ave_max_q/float(ep_t)), "/ EPSILON PROGRESS", t/float(FLAGS.anneal_epsilon_timesteps)
break
def build_graph(num_actions):
# Create shared deep q network
s, q_network = build_network(num_actions=num_actions, agent_history_length=FLAGS.agent_history_length, resized_width=FLAGS.resized_width, resized_height=FLAGS.resized_height)
network_params = q_network.trainable_weights
q_values = q_network(s)
# Create shared target network
st, target_q_network = build_network(num_actions=num_actions, agent_history_length=FLAGS.agent_history_length, resized_width=FLAGS.resized_width, resized_height=FLAGS.resized_height)
target_network_params = target_q_network.trainable_weights
target_q_values = target_q_network(st)
# Op for periodically updating target network with online network weights
reset_target_network_params = [target_network_params[i].assign(network_params[i]) for i in range(len(target_network_params))]
# Define cost and gradient update op
a = tf.placeholder("float", [None, num_actions])
y = tf.placeholder("float", [None])
action_q_values = tf.reduce_sum(q_values * a, reduction_indices=1)
cost = tf.reduce_mean(tf.square(y - action_q_values))
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
grad_update = optimizer.minimize(cost, var_list=network_params)
graph_ops = {"s" : s,
"q_values" : q_values,
"st" : st,
"target_q_values" : target_q_values,
"reset_target_network_params" : reset_target_network_params,
"a" : a,
"y" : y,
"grad_update" : grad_update}
return graph_ops
# Set up some episode summary ops to visualize on tensorboard.
def setup_summaries():
episode_reward = tf.Variable(0.)
tf.scalar_summary("Episode Reward", episode_reward)
episode_ave_max_q = tf.Variable(0.)
tf.scalar_summary("Max Q Value", episode_ave_max_q)
logged_epsilon = tf.Variable(0.)
tf.scalar_summary("Epsilon", logged_epsilon)
logged_T = tf.Variable(0.)
summary_vars = [episode_reward, episode_ave_max_q, logged_epsilon]
summary_placeholders = [tf.placeholder("float") for i in range(len(summary_vars))]
update_ops = [summary_vars[i].assign(summary_placeholders[i]) for i in range(len(summary_vars))]
summary_op = tf.merge_all_summaries()
return summary_placeholders, update_ops, summary_op
def get_num_actions():
"""
Returns the number of possible actions for the given atari game
"""
# Figure out number of actions from gym env
env = gym.make(FLAGS.game)
num_actions = env.action_space.n
if (FLAGS.game == "Pong-v0" or FLAGS.game == "Breakout-v0"):
# Gym currently specifies 6 actions for pong
# and breakout when only 3 are needed. This
# is a lame workaround.
num_actions = 3
return num_actions
def train(session, graph_ops, num_actions, saver):
# Initialize target network weights
session.run(graph_ops["reset_target_network_params"])
# Set up game environments (one per thread)
envs = [gym.make(FLAGS.game) for i in range(FLAGS.num_concurrent)]
summary_ops = setup_summaries()
summary_op = summary_ops[-1]
# Initialize variables
session.run(tf.initialize_all_variables())
summary_save_path = FLAGS.summary_dir + "/" + FLAGS.experiment
writer = tf.train.SummaryWriter(summary_save_path, session.graph)
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
# Start num_concurrent actor-learner training threads
actor_learner_threads = [threading.Thread(target=actor_learner_thread, args=(thread_id, envs[thread_id], session, graph_ops, num_actions, summary_ops, saver)) for thread_id in range(FLAGS.num_concurrent)]
for t in actor_learner_threads:
t.start()
# Show the agents training and write summary statistics
last_summary_time = 0
while True:
if FLAGS.show_training:
for env in envs:
env.render()
now = time.time()
if now - last_summary_time > FLAGS.summary_interval:
summary_str = session.run(summary_op)
writer.add_summary(summary_str, float(T))
last_summary_time = now
for t in actor_learner_threads:
t.join()
def evaluation(session, graph_ops, saver):
saver.restore(session, FLAGS.checkpoint_path)
print "Restored model weights from ", FLAGS.checkpoint_path
monitor_env = gym.make(FLAGS.game)
monitor_env.monitor.start(FLAGS.eval_dir+"/"+FLAGS.experiment+"/eval")
# Unpack graph ops
s = graph_ops["s"]
q_values = graph_ops["q_values"]
# Wrap env with AtariEnvironment helper class
env = AtariEnvironment(gym_env=monitor_env, resized_width=FLAGS.resized_width, resized_height=FLAGS.resized_height, agent_history_length=FLAGS.agent_history_length)
for i_episode in xrange(FLAGS.num_eval_episodes):
s_t = env.get_initial_state()
ep_reward = 0
terminal = False
while not terminal:
monitor_env.render()
readout_t = q_values.eval(session = session, feed_dict = {s : [s_t]})
action_index = np.argmax(readout_t)
s_t1, r_t, terminal, info = env.step(action_index)
s_t = s_t1
ep_reward += r_t
print ep_reward
monitor_env.monitor.close()
def main(_):
g = tf.Graph()
with g.as_default(), tf.Session() as session:
K.set_session(session)
num_actions = get_num_actions()
graph_ops = build_graph(num_actions)
saver = tf.train.Saver()
if FLAGS.testing:
evaluation(session, graph_ops, saver)
else:
train(session, graph_ops, num_actions, saver)
if __name__ == "__main__":
tf.app.run()