-
Notifications
You must be signed in to change notification settings - Fork 54
/
memoryTF2conv.py
160 lines (129 loc) · 5.8 KB
/
memoryTF2conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# #################################################################
# This file contains the main LyDROO operations, including building convolutional DNN,
# Storing data sample, Training DNN, and generating quantized binary offloading decisions.
# version 1.0 -- January 2021. Written based on Tensorflow 2
# Liang Huang (lianghuang AT zjut.edu.cn)
# #################################################################
from __future__ import print_function
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
print(tf.__version__)
print(tf.keras.__version__)
# DNN network for memory
class MemoryDNN:
def __init__(
self,
net,
learning_rate = 0.01,
training_interval=10,
batch_size=100,
memory_size=1000,
output_graph=False
):
self.net = net # the size of the DNN
self.training_interval = training_interval # learn every #training_interval
self.lr = learning_rate
self.batch_size = batch_size
self.memory_size = memory_size
# store all binary actions
self.enumerate_actions = []
# stored # memory entry
self.memory_counter = 1
# store training cost
self.cost_his = []
# initialize zero memory [h, m]
self.memory = np.zeros((self.memory_size, self.net[0] + self.net[-1]))
# construct memory network
self._build_net()
def _build_net(self):
self.model = keras.Sequential([
layers.Conv1D(32, 3, activation='relu',input_shape=[int(self.net[0]/3),3]), # first Conv1D with 32 channels and kearnal size 3
layers.Conv1D(64, 3, activation='relu'), # second Conv1D with 32 channels and kearnal size 3
layers.Conv1D(64, 3, activation='relu'), # second Conv1D with 32 channels and kearnal size 3
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(self.net[-1], activation='sigmoid')
# layers.Dense(self.net[1], activation='relu'), # the first hidden layer
# layers.Dense(self.net[2], activation='relu'), # the second hidden layer
# layers.Dense(self.net[-1], activation='sigmoid') # the output layer
])
#
self.model.compile(optimizer=keras.optimizers.Adam(lr=self.lr), loss=tf.losses.binary_crossentropy, metrics=['accuracy'])
def remember(self, h, m):
# replace the old memory with new memory
idx = self.memory_counter % self.memory_size
self.memory[idx, :] = np.hstack((h, m))
self.memory_counter += 1
def encode(self, h, m):
# encoding the entry
self.remember(h, m)
# train the DNN every 10 step
# if self.memory_counter> self.memory_size / 2 and self.memory_counter % self.training_interval == 0:
if self.memory_counter % self.training_interval == 0:
self.learn()
def learn(self):
# sample batch memory from all memory
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
batch_memory = self.memory[sample_index, :]
h_train = batch_memory[:, 0: self.net[0]]
h_train = h_train.reshape(self.batch_size,int(self.net[0]/3),3)
m_train = batch_memory[:, self.net[0]:]
# print(h_train) # (128, 10)
# print(m_train) # (128, 10)
# train the DNN
hist = self.model.fit(h_train, m_train, verbose=0)
self.cost = hist.history['loss'][0]
assert(self.cost > 0)
self.cost_his.append(self.cost)
def decode(self, h, k = 1, mode = 'OP'):
# to have batch dimension when feed into tf placeholder
h=h.reshape(10,3)
h = h[np.newaxis, :]
m_pred = self.model.predict(h)
if mode is 'OP':
return self.knm(m_pred[0], k)
elif mode is 'KNN':
return self.knn(m_pred[0], k)
elif mode is 'OPN':
return self.opn(m_pred[0], k)
else:
print("The action selection must be 'OP' or 'KNN'")
def knm(self, m, k = 1):
# return k order-preserving binary actions
m_list = []
# generate the first binary offloading decision with respect to equation (8)
m_list.append(1*(m>0.5))
if k > 1:
# generate the remaining K-1 binary offloading decisions with respect to equation (9)
m_abs = abs(m-0.5)
idx_list = np.argsort(m_abs)[:k-1]
for i in range(k-1):
if m[idx_list[i]] >0.5:
# set the \hat{x}_{t,(k-1)} to 0
m_list.append(1*(m - m[idx_list[i]] > 0))
else:
# set the \hat{x}_{t,(k-1)} to 1
m_list.append(1*(m - m[idx_list[i]] >= 0))
return m_list
def opn(self, m, k= 1):
return self.knm(m,k)+self.knm(m+np.random.normal(0,1,len(m)),k)
def knn(self, m, k = 1):
# list all 2^N binary offloading actions
if len(self.enumerate_actions) is 0:
import itertools
self.enumerate_actions = np.array(list(map(list, itertools.product([0, 1], repeat=self.net[0]))))
# the 2-norm
sqd = ((self.enumerate_actions - m)**2).sum(1)
idx = np.argsort(sqd)
return self.enumerate_actions[idx[:k]]
def plot_cost(self):
import matplotlib.pyplot as plt
plt.plot(np.arange(len(self.cost_his))*self.training_interval, self.cost_his)
plt.ylabel('Training Loss')
plt.xlabel('Time Frames')
plt.show()