-
Notifications
You must be signed in to change notification settings - Fork 1
/
ZertzAI.hs
132 lines (119 loc) · 5.22 KB
/
ZertzAI.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
module ZertzAI(ZertzState(..)) where
import Zertz
import Control.Monad
import qualified Data.List as List
import qualified Data.Map as Map
import qualified Data.Graph as Graph
import qualified Data.Set as Set
import qualified MiniMax as MiniMax
-- Provide instance implementations to make ZertzState valid input
-- to the minimax solver.
instance MiniMax.WorldState ZertzState where
-- generateMoves - If there are jumps available, we must take one. Otherwise,
-- we perform a placement.
generateMoves state
| (generateJumps state) == [state] = map invert $ generatePlacements state
| otherwise = map invert $ generateJumps state
where invert (ZertzState s1 s2 b p) = ZertzState s1 s2 b (-p)
-- isTerminal - The game state is terminal if either player has a winning
-- score set.
isTerminal st@(ZertzState s1 s2 _ _) = isEndgame s1 || isEndgame s2
-- score - The score function is defined as the number of balls player 2 needs
-- to win minus the number of balls player 1 needs to win. This makes the
-- score zero-sum, which is needed for negamax.
score (ZertzState s1 s2 _ _) = (marblesToWin s2) - (marblesToWin s1)
-- isEndgame - Simple predicate that determines if a given score set is a
-- a winning combination.
isEndgame :: Score -> Bool
isEndgame (3, _, _) = True
isEndgame (_, 4, _) = True
isEndgame (_, _, 5) = True
isEndgame (2, 2, 2) = True
isEndgame _ = False
-- marblesToWin - Returns the number of marbles needed to turn a given hand into
-- a winning one.
marblesToWin :: Score -> Int
marblesToWin (w, g, b) =
let wToWin = max 0 (3-w)
gToWin = max 0 (4-g)
bToWin = max 0 (5-b)
cToWin = (max 0 (2-w)) + (max 0 (2-g)) + (max 0 (2-b)) in
foldr (min) 100 [wToWin, gToWin, bToWin, cToWin]
-- occupiedCoords - Returns the list of coordinates that contain marbles
-- in a given game state.
occupiedCoords :: ZertzState -> [((Int, Int), HexState)]
occupiedCoords state@(ZertzState _ _ b _) =
Map.toList $ Map.filter occupied b
where
occupied h = h /= Empty && h /= Open
-- successorJumps - Given a starting state, generate all states that are
-- reachable through exactly one jump.
successorJumps :: ZertzState -> [ZertzState]
successorJumps ws@(ZertzState s1 s2 b p) = do
(c, color) <- occupiedCoords ws
(start, end) <- [(eHex, wHex), (wHex, eHex), (swHex, neHex),
(neHex, swHex), (nwHex, seHex), (seHex, nwHex)]
if (hexOccupied b $ start c) && (hexOpen b $ end c)
then case p of
1 -> return $ ZertzState (scoreMarble s1 color) s2
(jumpMarble (start c) c (end c) b) p
(-1) -> return $ ZertzState s1 (scoreMarble s2 color)
(jumpMarble (start c) c (end c) b) p
else []
-- generateJumps - Given a starting state, generate the leaf states of the jump
-- tree inductively defined by successorJumps.
generateJumps :: ZertzState -> [ZertzState]
generateJumps state@(ZertzState s1 s2 b p)
| null children = [state]
| otherwise = concatMap generateJumps children
where children = filter (/= state) $ successorJumps state
-- generatePlacemetns - Given a starting state, generate all states that are
-- accessible through placing a marble and removing a disk.
generatePlacements :: ZertzState -> [ZertzState]
generatePlacements s@(ZertzState s1 s2 b p) = do
color <- filter (\c -> (marblesAvailable s c) > 0) [White, Gray, Black]
coord <- openHexes
remCoord <- filter (removable s) openHexes
guard $ coord /= remCoord
return $ eliminateFilledComponents $
ZertzState s1 s2 (removeMarble remCoord (placeMarble coord color b)) p
where
openHexes = Map.keys $ Map.filter (== Open) b
removable :: ZertzState -> Coord -> Bool
removable (ZertzState _ _ b _) c =
case numEmpties of
1 -> True
2 -> True
3 -> True
4 ->
let offsetLists = map (flip drop empties) [0..5]
matches =
map (/= [True, True, True, False, True, False]) offsetLists in
all (id) matches
_ -> False
where
hexList = cycle [neHex, eHex, seHex, swHex, wHex, nwHex]
empties = map (\x -> (getHex x b) == Empty) $ map ($ c) hexList
numEmpties = length $ filter (id) $ take 6 empties
eliminateFilledComponents :: ZertzState -> ZertzState
eliminateFilledComponents s@(ZertzState _ _ b _) =
foldr (fold_remove) s filled
where
filled = filledComponents b
new_board = foldr (\c -> \b' -> removeMarble c b') b filled
fold_remove cd (ZertzState s1 s2 b' p) =
let color = getHex cd b in
case (color, p) of
(Open, _) -> ZertzState s1 s2 new_board p
(_, 1) -> ZertzState (scoreMarble s1 color) s2 new_board p
(_, (-1)) -> ZertzState s1 (scoreMarble s2 color) new_board p
filledComponents :: ZertzBoard -> [Coord]
filledComponents b =
concat filled_comps
where
not_empty = Set.fromList $ Map.keys $ Map.filter (/= Empty) b
neighbors x = filter (flip Set.member not_empty) $ map (\f -> f x)
[neHex, eHex, seHex, swHex, wHex, nwHex]
graph_list = map (\x -> (x, x, neighbors x)) $ Set.toList not_empty
components = map Graph.flattenSCC $ Graph.stronglyConnComp graph_list
filled_comps = filter (foldr (&&) True . map (hexOccupied b)) components