-
Notifications
You must be signed in to change notification settings - Fork 8
/
log.txt
1084 lines (1079 loc) · 69.6 KB
/
log.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
data: data/save_data
log: data/log/
epoch: 15
batch_size: 16
learning_rate: 0.0005
max_grad_norm: 2
learning_rate_decay: 0.5
bidirec: True
emb_size: 1024
encoder_hidden_size: 256
decoder_hidden_size: 512
num_layers: 2
dropout: 0
eval_interval: 1
save_interval: 5
log_interval: 20
seq2seq(
(slot_embedding): Embedding(30529, 1024)
(src_embedding): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30522, 1024)
(position_embeddings): Embedding(512, 1024)
(token_type_embeddings): Embedding(2, 1024)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(12): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(13): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(14): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(15): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(16): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(17): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(18): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(19): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(20): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(21): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(22): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(23): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1)
)
(output): BertSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): FusedLayerNorm(torch.Size([1024]), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(activation): Tanh()
)
)
(encoder): rnn_encoder(
(rnn): LSTM(1024, 256, num_layers=2, bidirectional=True)
)
(decoder): rnn_decoder(
(slot_embedding): Embedding(30529, 1024)
(rnn): StackedLSTM(
(dropout): Dropout(p=0)
(layers): ModuleList(
(0): LSTMCell(1024, 512)
(1): LSTMCell(512, 512)
)
)
(slot_linear): Linear(in_features=512, out_features=1024, bias=True)
(attention): global_attention(
(linear_in): Linear(in_features=512, out_features=512, bias=True)
(softmax): Softmax()
(linear_out): Linear(in_features=512, out_features=512, bias=True)
)
(linear_out): Linear(in_features=2048, out_features=512, bias=True)
(re1): ReLU()
(linear_slot): Linear(in_features=512, out_features=512, bias=True)
(re2): ReLU()
(linear3): Linear(in_features=512, out_features=512, bias=True)
(re3): ReLU()
(sigmoid): Sigmoid()
(log_softmax): LogSoftmax()
(linear4): Linear(in_features=512, out_features=512, bias=True)
(re4): ReLU()
(dropout): Dropout(p=0.5)
)
(criterion): NLLLoss()
)
total number of trainable parameters: 43602944
score function is
time: 429.001, epoch: 1, updates: 20, train loss: 7.84684, train sloss: 8.18349, train vloss: 7.86175
time: 447.723, epoch: 1, updates: 40, train loss: 2.73874, train sloss: 3.50699, train vloss: 4.39407
time: 452.081, epoch: 1, updates: 60, train loss: 1.53455, train sloss: 2.38249, train vloss: 3.56700
time: 428.624, epoch: 1, updates: 80, train loss: 1.26112, train sloss: 1.68221, train vloss: 2.92155
time: 416.231, epoch: 1, updates: 100, train loss: 1.15530, train sloss: 1.38491, train vloss: 2.55007
time: 440.586, epoch: 1, updates: 120, train loss: 1.01462, train sloss: 1.29115, train vloss: 2.47705
time: 439.143, epoch: 1, updates: 140, train loss: 0.95187, train sloss: 1.19046, train vloss: 2.28471
time: 412.257, epoch: 1, updates: 160, train loss: 0.72311, train sloss: 1.10437, train vloss: 2.15462
time: 444.629, epoch: 1, updates: 180, train loss: 0.58008, train sloss: 1.01048, train vloss: 2.04101
time: 460.398, epoch: 1, updates: 200, train loss: 0.47679, train sloss: 0.90468, train vloss: 1.95767
time: 425.992, epoch: 1, updates: 220, train loss: 0.39370, train sloss: 0.91301, train vloss: 1.90956
time: 450.225, epoch: 1, updates: 240, train loss: 0.20551, train sloss: 0.82973, train vloss: 1.74938
time: 438.299, epoch: 1, updates: 260, train loss: 0.17996, train sloss: 0.76493, train vloss: 1.67136
time: 423.817, epoch: 1, updates: 280, train loss: 0.17217, train sloss: 0.76383, train vloss: 1.64326
time: 475.736, epoch: 1, updates: 300, train loss: 0.19374, train sloss: 0.75101, train vloss: 1.58994
time: 458.730, epoch: 1, updates: 320, train loss: 0.15224, train sloss: 0.76478, train vloss: 1.63537
time: 395.698, epoch: 1, updates: 340, train loss: 0.10194, train sloss: 0.64964, train vloss: 1.48830
time: 431.051, epoch: 1, updates: 360, train loss: 0.11471, train sloss: 0.67276, train vloss: 1.49629
time: 435.477, epoch: 1, updates: 380, train loss: 0.11352, train sloss: 0.62590, train vloss: 1.55238
time: 445.793, epoch: 1, updates: 400, train loss: 0.13757, train sloss: 0.61327, train vloss: 1.40695
time: 397.281, epoch: 1, updates: 420, train loss: 0.09373, train sloss: 0.56793, train vloss: 1.41845
time: 409.689, epoch: 1, updates: 440, train loss: 0.09887, train sloss: 0.58647, train vloss: 1.39817
time: 458.330, epoch: 1, updates: 460, train loss: 0.14227, train sloss: 0.55964, train vloss: 1.37649
time: 420.027, epoch: 1, updates: 480, train loss: 0.09259, train sloss: 0.48279, train vloss: 1.32362
time: 417.312, epoch: 1, updates: 500, train loss: 0.10925, train sloss: 0.47665, train vloss: 1.35717
time: 441.773, epoch: 1, updates: 520, train loss: 0.15845, train sloss: 0.49300, train vloss: 1.36545
time: 308.829, epoch: 2, updates: 540, train loss: 0.09779, train sloss: 0.44286, train vloss: 1.30250
time: 399.160, epoch: 2, updates: 560, train loss: 0.08380, train sloss: 0.38923, train vloss: 1.20280
time: 408.224, epoch: 2, updates: 580, train loss: 0.06589, train sloss: 0.35787, train vloss: 1.10276
time: 427.548, epoch: 2, updates: 600, train loss: 0.09402, train sloss: 0.34314, train vloss: 1.13209
time: 430.249, epoch: 2, updates: 620, train loss: 0.09098, train sloss: 0.35348, train vloss: 1.19094
time: 465.440, epoch: 2, updates: 640, train loss: 0.10521, train sloss: 0.35700, train vloss: 1.16043
time: 445.991, epoch: 2, updates: 660, train loss: 0.10393, train sloss: 0.35115, train vloss: 1.11064
time: 439.995, epoch: 2, updates: 680, train loss: 0.07084, train sloss: 0.34865, train vloss: 1.18085
time: 422.305, epoch: 2, updates: 700, train loss: 0.08929, train sloss: 0.35441, train vloss: 1.06935
time: 465.467, epoch: 2, updates: 720, train loss: 0.09593, train sloss: 0.31773, train vloss: 1.07987
time: 397.902, epoch: 2, updates: 740, train loss: 0.17625, train sloss: 0.33822, train vloss: 1.11821
time: 434.932, epoch: 2, updates: 760, train loss: 0.07163, train sloss: 0.29367, train vloss: 1.07982
time: 415.447, epoch: 2, updates: 780, train loss: 0.09963, train sloss: 0.32610, train vloss: 1.04782
time: 424.257, epoch: 2, updates: 800, train loss: 0.08103, train sloss: 0.30426, train vloss: 0.97138
time: 462.113, epoch: 2, updates: 820, train loss: 0.10134, train sloss: 0.29902, train vloss: 0.95946
time: 468.851, epoch: 2, updates: 840, train loss: 0.07163, train sloss: 0.28166, train vloss: 0.97954
time: 433.450, epoch: 2, updates: 860, train loss: 0.05965, train sloss: 0.28742, train vloss: 0.93835
time: 458.345, epoch: 2, updates: 880, train loss: 0.07939, train sloss: 0.28653, train vloss: 0.98421
time: 440.502, epoch: 2, updates: 900, train loss: 0.07409, train sloss: 0.26793, train vloss: 0.94662
time: 444.556, epoch: 2, updates: 920, train loss: 0.09043, train sloss: 0.25787, train vloss: 0.92365
time: 405.800, epoch: 2, updates: 940, train loss: 0.05743, train sloss: 0.24096, train vloss: 0.86159
time: 414.267, epoch: 2, updates: 960, train loss: 0.08057, train sloss: 0.26797, train vloss: 0.85895
time: 413.339, epoch: 2, updates: 980, train loss: 0.07104, train sloss: 0.26359, train vloss: 0.82158
time: 438.194, epoch: 2, updates: 1000, train loss: 0.14598, train sloss: 0.28183, train vloss: 0.86450
time: 445.836, epoch: 2, updates: 1020, train loss: 0.07597, train sloss: 0.26787, train vloss: 0.83121
time: 419.805, epoch: 2, updates: 1040, train loss: 0.08349, train sloss: 0.23398, train vloss: 0.80639
time: 98.135, epoch: 3, updates: 1060, train loss: 0.11485, train sloss: 0.24347, train vloss: 0.69191
time: 443.202, epoch: 3, updates: 1080, train loss: 0.07593, train sloss: 0.21519, train vloss: 0.72677
time: 407.505, epoch: 3, updates: 1100, train loss: 0.08323, train sloss: 0.24388, train vloss: 0.71929
time: 421.234, epoch: 3, updates: 1120, train loss: 0.06022, train sloss: 0.24280, train vloss: 0.68990
time: 433.855, epoch: 3, updates: 1140, train loss: 0.07021, train sloss: 0.22856, train vloss: 0.66132
time: 482.011, epoch: 3, updates: 1160, train loss: 0.15874, train sloss: 0.25221, train vloss: 0.66578
time: 408.471, epoch: 3, updates: 1180, train loss: 0.16669, train sloss: 0.25598, train vloss: 0.69729
time: 430.252, epoch: 3, updates: 1200, train loss: 0.08885, train sloss: 0.27469, train vloss: 0.68002
time: 465.665, epoch: 3, updates: 1220, train loss: 0.10446, train sloss: 0.24297, train vloss: 0.61383
time: 421.792, epoch: 3, updates: 1240, train loss: 0.08561, train sloss: 0.25034, train vloss: 0.59956
time: 400.704, epoch: 3, updates: 1260, train loss: 0.06256, train sloss: 0.24800, train vloss: 0.57262
time: 474.909, epoch: 3, updates: 1280, train loss: 0.05884, train sloss: 0.20575, train vloss: 0.55257
time: 432.645, epoch: 3, updates: 1300, train loss: 0.05782, train sloss: 0.19805, train vloss: 0.55298
time: 443.633, epoch: 3, updates: 1320, train loss: 0.07595, train sloss: 0.22438, train vloss: 0.56595
time: 392.351, epoch: 3, updates: 1340, train loss: 0.07957, train sloss: 0.25855, train vloss: 0.58926
time: 392.849, epoch: 3, updates: 1360, train loss: 0.05779, train sloss: 0.22462, train vloss: 0.51910
time: 459.321, epoch: 3, updates: 1380, train loss: 0.08575, train sloss: 0.20146, train vloss: 0.46888
time: 460.493, epoch: 3, updates: 1400, train loss: 0.05777, train sloss: 0.17358, train vloss: 0.45153
time: 441.814, epoch: 3, updates: 1420, train loss: 0.07691, train sloss: 0.19012, train vloss: 0.43113
time: 440.276, epoch: 3, updates: 1440, train loss: 0.07646, train sloss: 0.20438, train vloss: 0.47406
time: 426.132, epoch: 3, updates: 1460, train loss: 0.07298, train sloss: 0.18862, train vloss: 0.42309
time: 446.636, epoch: 3, updates: 1480, train loss: 0.08185, train sloss: 0.20026, train vloss: 0.43132
time: 417.660, epoch: 3, updates: 1500, train loss: 0.06862, train sloss: 0.19258, train vloss: 0.39136
time: 431.843, epoch: 3, updates: 1520, train loss: 0.09086, train sloss: 0.19437, train vloss: 0.43301
time: 449.496, epoch: 3, updates: 1540, train loss: 0.06672, train sloss: 0.18318, train vloss: 0.40266
time: 421.358, epoch: 3, updates: 1560, train loss: 0.09868, train sloss: 0.18920, train vloss: 0.41978
time: 421.234, epoch: 3, updates: 1580, train loss: 0.07314, train sloss: 0.17556, train vloss: 0.40125
time: 399.805, epoch: 4, updates: 1600, train loss: 0.05955, train sloss: 0.18678, train vloss: 0.37163
time: 422.186, epoch: 4, updates: 1620, train loss: 0.08648, train sloss: 0.17944, train vloss: 0.32985
time: 389.352, epoch: 4, updates: 1640, train loss: 0.05910, train sloss: 0.17220, train vloss: 0.35129
time: 436.680, epoch: 4, updates: 1660, train loss: 0.05382, train sloss: 0.16198, train vloss: 0.34437
time: 410.682, epoch: 4, updates: 1680, train loss: 0.08009, train sloss: 0.18680, train vloss: 0.35701
time: 429.647, epoch: 4, updates: 1700, train loss: 0.12988, train sloss: 0.20471, train vloss: 0.36922
time: 401.167, epoch: 4, updates: 1720, train loss: 0.09116, train sloss: 0.17921, train vloss: 0.34968
time: 460.026, epoch: 4, updates: 1740, train loss: 0.09031, train sloss: 0.18363, train vloss: 0.31884
time: 438.543, epoch: 4, updates: 1760, train loss: 0.07562, train sloss: 0.19367, train vloss: 0.33067
time: 466.867, epoch: 4, updates: 1780, train loss: 0.05321, train sloss: 0.17645, train vloss: 0.29753
time: 482.852, epoch: 4, updates: 1800, train loss: 0.07008, train sloss: 0.18563, train vloss: 0.33970
time: 401.508, epoch: 4, updates: 1820, train loss: 0.05610, train sloss: 0.16010, train vloss: 0.28588
time: 405.791, epoch: 4, updates: 1840, train loss: 0.04548, train sloss: 0.15662, train vloss: 0.29839
time: 411.396, epoch: 4, updates: 1860, train loss: 0.05841, train sloss: 0.15487, train vloss: 0.28022
time: 505.944, epoch: 4, updates: 1880, train loss: 0.07862, train sloss: 0.16232, train vloss: 0.32851
time: 450.501, epoch: 4, updates: 1900, train loss: 0.04457, train sloss: 0.16609, train vloss: 0.27836
time: 430.489, epoch: 4, updates: 1920, train loss: 0.04975, train sloss: 0.13902, train vloss: 0.27428
time: 469.726, epoch: 4, updates: 1940, train loss: 0.06851, train sloss: 0.16367, train vloss: 0.28377
time: 423.760, epoch: 4, updates: 1960, train loss: 0.04471, train sloss: 0.14184, train vloss: 0.25629
time: 464.174, epoch: 4, updates: 1980, train loss: 0.05746, train sloss: 0.15875, train vloss: 0.26644
time: 446.307, epoch: 4, updates: 2000, train loss: 0.04801, train sloss: 0.14244, train vloss: 0.25232
time: 474.321, epoch: 4, updates: 2020, train loss: 0.05951, train sloss: 0.17024, train vloss: 0.25151
time: 467.194, epoch: 4, updates: 2040, train loss: 0.06652, train sloss: 0.17686, train vloss: 0.29742
time: 493.190, epoch: 4, updates: 2060, train loss: 0.04416, train sloss: 0.14070, train vloss: 0.25001
time: 469.322, epoch: 4, updates: 2080, train loss: 0.04771, train sloss: 0.17219, train vloss: 0.27649
time: 424.168, epoch: 4, updates: 2100, train loss: 0.05072, train sloss: 0.15772, train vloss: 0.26702
time: 254.414, epoch: 5, updates: 2120, train loss: 0.04225, train sloss: 0.15173, train vloss: 0.24884
time: 412.709, epoch: 5, updates: 2140, train loss: 0.03859, train sloss: 0.15393, train vloss: 0.26523
time: 494.046, epoch: 5, updates: 2160, train loss: 0.04815, train sloss: 0.15553, train vloss: 0.28135
time: 474.947, epoch: 5, updates: 2180, train loss: 0.04735, train sloss: 0.14234, train vloss: 0.24231
time: 442.330, epoch: 5, updates: 2200, train loss: 0.05551, train sloss: 0.15339, train vloss: 0.26034
time: 461.767, epoch: 5, updates: 2220, train loss: 0.08250, train sloss: 0.17459, train vloss: 0.25060
time: 485.638, epoch: 5, updates: 2240, train loss: 0.05024, train sloss: 0.14488, train vloss: 0.26428
time: 436.118, epoch: 5, updates: 2260, train loss: 0.05274, train sloss: 0.13919, train vloss: 0.23847
time: 399.121, epoch: 5, updates: 2280, train loss: 0.03552, train sloss: 0.12889, train vloss: 0.23855
time: 394.186, epoch: 5, updates: 2300, train loss: 0.05500, train sloss: 0.15845, train vloss: 0.26205
time: 471.409, epoch: 5, updates: 2320, train loss: 0.04462, train sloss: 0.14616, train vloss: 0.24663
time: 478.639, epoch: 5, updates: 2340, train loss: 0.06295, train sloss: 0.15236, train vloss: 0.25415
time: 427.829, epoch: 5, updates: 2360, train loss: 0.05261, train sloss: 0.16183, train vloss: 0.22439
time: 430.507, epoch: 5, updates: 2380, train loss: 0.04564, train sloss: 0.15501, train vloss: 0.25624
time: 447.230, epoch: 5, updates: 2400, train loss: 0.06175, train sloss: 0.14838, train vloss: 0.22736
time: 408.669, epoch: 5, updates: 2420, train loss: 0.04963, train sloss: 0.13683, train vloss: 0.20439
time: 429.306, epoch: 5, updates: 2440, train loss: 0.06077, train sloss: 0.13182, train vloss: 0.20575
time: 432.173, epoch: 5, updates: 2460, train loss: 0.07816, train sloss: 0.15394, train vloss: 0.24879
time: 429.549, epoch: 5, updates: 2480, train loss: 0.06391, train sloss: 0.14392, train vloss: 0.21504
time: 425.832, epoch: 5, updates: 2500, train loss: 0.05124, train sloss: 0.14541, train vloss: 0.24251
time: 424.675, epoch: 5, updates: 2520, train loss: 0.05549, train sloss: 0.16030, train vloss: 0.22127
time: 482.095, epoch: 5, updates: 2540, train loss: 0.05044, train sloss: 0.14363, train vloss: 0.22030
time: 490.956, epoch: 5, updates: 2560, train loss: 0.04633, train sloss: 0.14259, train vloss: 0.21896
time: 447.624, epoch: 5, updates: 2580, train loss: 0.04196, train sloss: 0.16157, train vloss: 0.23313
time: 381.085, epoch: 5, updates: 2600, train loss: 0.04332, train sloss: 0.13473, train vloss: 0.19557
time: 439.711, epoch: 5, updates: 2620, train loss: 0.06240, train sloss: 0.13341, train vloss: 0.20696
========evaluating after 5 epochs========
slot_acc = 0.9384323298074315
joint_ds_acc = 0.49145646867371845
joint_all_acc = 0.365202061296447
best_slot_acc = 0.9384323298074315
best_joint_acc = 0.49145646867371845
best_joint_all_acc = 0.365202061296447 at epoch 5
time: 828.083
==========================================
time: 130.077, epoch: 6, updates: 2640, train loss: 0.09062, train sloss: 0.17660, train vloss: 0.23103
time: 439.720, epoch: 6, updates: 2660, train loss: 0.04432, train sloss: 0.12857, train vloss: 0.22643
time: 420.101, epoch: 6, updates: 2680, train loss: 0.04814, train sloss: 0.13760, train vloss: 0.18721
time: 468.337, epoch: 6, updates: 2700, train loss: 0.05685, train sloss: 0.12961, train vloss: 0.19398
time: 401.247, epoch: 6, updates: 2720, train loss: 0.06902, train sloss: 0.12398, train vloss: 0.18372
time: 437.345, epoch: 6, updates: 2740, train loss: 0.04997, train sloss: 0.13726, train vloss: 0.20934
time: 468.839, epoch: 6, updates: 2760, train loss: 0.05761, train sloss: 0.13650, train vloss: 0.20413
time: 507.396, epoch: 6, updates: 2780, train loss: 0.05262, train sloss: 0.13665, train vloss: 0.19932
time: 448.832, epoch: 6, updates: 2800, train loss: 0.03975, train sloss: 0.13636, train vloss: 0.18259
time: 394.936, epoch: 6, updates: 2820, train loss: 0.03982, train sloss: 0.12756, train vloss: 0.19171
time: 452.982, epoch: 6, updates: 2840, train loss: 0.05382, train sloss: 0.14050, train vloss: 0.20685
time: 423.986, epoch: 6, updates: 2860, train loss: 0.05607, train sloss: 0.13669, train vloss: 0.17415
time: 378.379, epoch: 6, updates: 2880, train loss: 0.04752, train sloss: 0.13996, train vloss: 0.20945
time: 428.766, epoch: 6, updates: 2900, train loss: 0.04148, train sloss: 0.12466, train vloss: 0.18772
time: 432.647, epoch: 6, updates: 2920, train loss: 0.04380, train sloss: 0.13373, train vloss: 0.19017
time: 429.650, epoch: 6, updates: 2940, train loss: 0.04253, train sloss: 0.12929, train vloss: 0.18831
time: 444.658, epoch: 6, updates: 2960, train loss: 0.04934, train sloss: 0.13078, train vloss: 0.19167
time: 404.375, epoch: 6, updates: 2980, train loss: 0.05384, train sloss: 0.13001, train vloss: 0.18148
time: 423.772, epoch: 6, updates: 3000, train loss: 0.05009, train sloss: 0.14028, train vloss: 0.19251
time: 435.665, epoch: 6, updates: 3020, train loss: 0.06040, train sloss: 0.14712, train vloss: 0.19405
time: 426.380, epoch: 6, updates: 3040, train loss: 0.05092, train sloss: 0.13517, train vloss: 0.17792
time: 418.738, epoch: 6, updates: 3060, train loss: 0.03414, train sloss: 0.12169, train vloss: 0.19163
time: 416.422, epoch: 6, updates: 3080, train loss: 0.06010, train sloss: 0.14391, train vloss: 0.18688
time: 436.267, epoch: 6, updates: 3100, train loss: 0.03976, train sloss: 0.12828, train vloss: 0.20280
time: 446.238, epoch: 6, updates: 3120, train loss: 0.04744, train sloss: 0.12859, train vloss: 0.20067
time: 450.017, epoch: 6, updates: 3140, train loss: 0.04845, train sloss: 0.14483, train vloss: 0.20788
time: 428.546, epoch: 6, updates: 3160, train loss: 0.03892, train sloss: 0.14216, train vloss: 0.19699
========evaluating after 6 epochs========
slot_acc = 0.9537564415513968
joint_ds_acc = 0.531326281529699
joint_all_acc = 0.40452942771901274
best_slot_acc = 0.9537564415513968
best_joint_acc = 0.531326281529699
best_joint_all_acc = 0.40452942771901274 at epoch 6
time: 843.707
==========================================
time: 403.883, epoch: 7, updates: 3180, train loss: 0.02615, train sloss: 0.11266, train vloss: 0.17472
time: 457.528, epoch: 7, updates: 3200, train loss: 0.02352, train sloss: 0.11416, train vloss: 0.16441
time: 422.278, epoch: 7, updates: 3220, train loss: 0.03359, train sloss: 0.11929, train vloss: 0.17154
time: 442.534, epoch: 7, updates: 3240, train loss: 0.03510, train sloss: 0.14128, train vloss: 0.17098
time: 449.702, epoch: 7, updates: 3260, train loss: 0.04464, train sloss: 0.13269, train vloss: 0.16858
time: 453.547, epoch: 7, updates: 3280, train loss: 0.06176, train sloss: 0.11964, train vloss: 0.16681
time: 451.799, epoch: 7, updates: 3300, train loss: 0.04598, train sloss: 0.12328, train vloss: 0.16865
time: 389.677, epoch: 7, updates: 3320, train loss: 0.03606, train sloss: 0.12556, train vloss: 0.16193
time: 480.018, epoch: 7, updates: 3340, train loss: 0.04465, train sloss: 0.13787, train vloss: 0.17703
time: 412.101, epoch: 7, updates: 3360, train loss: 0.04318, train sloss: 0.12323, train vloss: 0.17457
time: 444.821, epoch: 7, updates: 3380, train loss: 0.04022, train sloss: 0.14007, train vloss: 0.18131
time: 399.804, epoch: 7, updates: 3400, train loss: 0.03839, train sloss: 0.12878, train vloss: 0.16163
time: 404.678, epoch: 7, updates: 3420, train loss: 0.03857, train sloss: 0.12979, train vloss: 0.17933
time: 461.616, epoch: 7, updates: 3440, train loss: 0.05463, train sloss: 0.15328, train vloss: 0.17932
time: 431.039, epoch: 7, updates: 3460, train loss: 0.04589, train sloss: 0.13418, train vloss: 0.17656
time: 417.033, epoch: 7, updates: 3480, train loss: 0.04417, train sloss: 0.13827, train vloss: 0.18874
time: 441.508, epoch: 7, updates: 3500, train loss: 0.05240, train sloss: 0.13264, train vloss: 0.18354
time: 437.665, epoch: 7, updates: 3520, train loss: 0.04251, train sloss: 0.12516, train vloss: 0.15984
time: 400.750, epoch: 7, updates: 3540, train loss: 0.05695, train sloss: 0.12870, train vloss: 0.16051
time: 398.960, epoch: 7, updates: 3560, train loss: 0.05503, train sloss: 0.12887, train vloss: 0.16780
time: 415.131, epoch: 7, updates: 3580, train loss: 0.04271, train sloss: 0.12320, train vloss: 0.16920
time: 422.085, epoch: 7, updates: 3600, train loss: 0.04346, train sloss: 0.11068, train vloss: 0.15879
time: 431.799, epoch: 7, updates: 3620, train loss: 0.04437, train sloss: 0.12059, train vloss: 0.15195
time: 445.696, epoch: 7, updates: 3640, train loss: 0.03943, train sloss: 0.11976, train vloss: 0.15814
time: 441.015, epoch: 7, updates: 3660, train loss: 0.03494, train sloss: 0.12824, train vloss: 0.18045
time: 460.560, epoch: 7, updates: 3680, train loss: 0.03294, train sloss: 0.12634, train vloss: 0.14831
========evaluating after 7 epochs========
slot_acc = 0.9472470843504204
joint_ds_acc = 0.5149172769189042
joint_all_acc = 0.41863303498779497
best_slot_acc = 0.9537564415513968
best_joint_acc = 0.531326281529699
best_joint_all_acc = 0.41863303498779497 at epoch 7
time: 854.572
==========================================
time: 236.061, epoch: 8, updates: 3700, train loss: 0.04110, train sloss: 0.11395, train vloss: 0.14199
time: 388.980, epoch: 8, updates: 3720, train loss: 0.03408, train sloss: 0.10864, train vloss: 0.14244
time: 437.191, epoch: 8, updates: 3740, train loss: 0.03791, train sloss: 0.12144, train vloss: 0.14499
time: 443.424, epoch: 8, updates: 3760, train loss: 0.03236, train sloss: 0.11750, train vloss: 0.15424
time: 465.510, epoch: 8, updates: 3780, train loss: 0.02991, train sloss: 0.12615, train vloss: 0.14876
time: 440.739, epoch: 8, updates: 3800, train loss: 0.03571, train sloss: 0.11868, train vloss: 0.14955
time: 401.849, epoch: 8, updates: 3820, train loss: 0.03810, train sloss: 0.10370, train vloss: 0.14041
time: 437.883, epoch: 8, updates: 3840, train loss: 0.04721, train sloss: 0.11191, train vloss: 0.13825
time: 442.298, epoch: 8, updates: 3860, train loss: 0.04923, train sloss: 0.12355, train vloss: 0.16460
time: 447.846, epoch: 8, updates: 3880, train loss: 0.03583, train sloss: 0.11039, train vloss: 0.15318
time: 422.008, epoch: 8, updates: 3900, train loss: 0.03750, train sloss: 0.12370, train vloss: 0.14057
time: 403.374, epoch: 8, updates: 3920, train loss: 0.03421, train sloss: 0.12194, train vloss: 0.14155
time: 475.945, epoch: 8, updates: 3940, train loss: 0.04202, train sloss: 0.12804, train vloss: 0.14843
time: 427.785, epoch: 8, updates: 3960, train loss: 0.04245, train sloss: 0.11384, train vloss: 0.15006
time: 459.195, epoch: 8, updates: 3980, train loss: 0.03435, train sloss: 0.10988, train vloss: 0.14413
time: 392.957, epoch: 8, updates: 4000, train loss: 0.03266, train sloss: 0.11928, train vloss: 0.14505
time: 500.279, epoch: 8, updates: 4020, train loss: 0.08041, train sloss: 0.12716, train vloss: 0.15890
time: 396.743, epoch: 8, updates: 4040, train loss: 0.03498, train sloss: 0.11307, train vloss: 0.15428
time: 441.059, epoch: 8, updates: 4060, train loss: 0.05138, train sloss: 0.11478, train vloss: 0.14092
time: 443.711, epoch: 8, updates: 4080, train loss: 0.04445, train sloss: 0.11714, train vloss: 0.14099
time: 421.252, epoch: 8, updates: 4100, train loss: 0.05979, train sloss: 0.11610, train vloss: 0.14899
time: 431.174, epoch: 8, updates: 4120, train loss: 0.04738, train sloss: 0.12148, train vloss: 0.13521
time: 421.980, epoch: 8, updates: 4140, train loss: 0.03751, train sloss: 0.11341, train vloss: 0.14000
time: 474.071, epoch: 8, updates: 4160, train loss: 0.03420, train sloss: 0.12535, train vloss: 0.15531
time: 459.724, epoch: 8, updates: 4180, train loss: 0.03284, train sloss: 0.13139, train vloss: 0.14458
time: 411.122, epoch: 8, updates: 4200, train loss: 0.02944, train sloss: 0.11543, train vloss: 0.15000
========evaluating after 8 epochs========
slot_acc = 0.9547057228098725
joint_ds_acc = 0.5336316788717114
joint_all_acc = 0.4526715486845674
best_slot_acc = 0.9547057228098725
best_joint_acc = 0.5336316788717114
best_joint_all_acc = 0.4526715486845674 at epoch 8
time: 1071.710
==========================================
time: 92.048, epoch: 9, updates: 4220, train loss: 0.02880, train sloss: 0.11545, train vloss: 0.13452
time: 478.806, epoch: 9, updates: 4240, train loss: 0.04578, train sloss: 0.10945, train vloss: 0.13597
time: 475.634, epoch: 9, updates: 4260, train loss: 0.03041, train sloss: 0.10765, train vloss: 0.12697
time: 465.615, epoch: 9, updates: 4280, train loss: 0.04037, train sloss: 0.10535, train vloss: 0.13994
time: 410.797, epoch: 9, updates: 4300, train loss: 0.03119, train sloss: 0.10745, train vloss: 0.13302
time: 458.146, epoch: 9, updates: 4320, train loss: 0.03168, train sloss: 0.10990, train vloss: 0.13179
time: 457.524, epoch: 9, updates: 4340, train loss: 0.03948, train sloss: 0.11663, train vloss: 0.13450
time: 508.534, epoch: 9, updates: 4360, train loss: 0.03135, train sloss: 0.10709, train vloss: 0.12790
time: 489.975, epoch: 9, updates: 4380, train loss: 0.05229, train sloss: 0.12845, train vloss: 0.15181
time: 463.752, epoch: 9, updates: 4400, train loss: 0.03588, train sloss: 0.11388, train vloss: 0.13444
time: 469.072, epoch: 9, updates: 4420, train loss: 0.05671, train sloss: 0.13133, train vloss: 0.14831
time: 477.815, epoch: 9, updates: 4440, train loss: 0.03320, train sloss: 0.11819, train vloss: 0.13036
time: 468.570, epoch: 9, updates: 4460, train loss: 0.03309, train sloss: 0.12534, train vloss: 0.15652
time: 415.160, epoch: 9, updates: 4480, train loss: 0.03294, train sloss: 0.11976, train vloss: 0.15371
time: 453.515, epoch: 9, updates: 4500, train loss: 0.02765, train sloss: 0.11813, train vloss: 0.13997
time: 406.413, epoch: 9, updates: 4520, train loss: 0.04175, train sloss: 0.11586, train vloss: 0.14272
time: 442.467, epoch: 9, updates: 4540, train loss: 0.03960, train sloss: 0.11829, train vloss: 0.13898
time: 401.338, epoch: 9, updates: 4560, train loss: 0.03729, train sloss: 0.11818, train vloss: 0.14179
time: 485.882, epoch: 9, updates: 4580, train loss: 0.06087, train sloss: 0.13478, train vloss: 0.15619
time: 459.230, epoch: 9, updates: 4600, train loss: 0.03029, train sloss: 0.11661, train vloss: 0.14605
time: 480.686, epoch: 9, updates: 4620, train loss: 0.03126, train sloss: 0.12021, train vloss: 0.14495
time: 446.428, epoch: 9, updates: 4640, train loss: 0.03922, train sloss: 0.10725, train vloss: 0.13627
time: 486.936, epoch: 9, updates: 4660, train loss: 0.03146, train sloss: 0.10332, train vloss: 0.13063
time: 483.950, epoch: 9, updates: 4680, train loss: 0.03407, train sloss: 0.11354, train vloss: 0.14082
time: 436.037, epoch: 9, updates: 4700, train loss: 0.04908, train sloss: 0.11235, train vloss: 0.13814
time: 471.072, epoch: 9, updates: 4720, train loss: 0.05188, train sloss: 0.11158, train vloss: 0.15552
time: 441.939, epoch: 9, updates: 4740, train loss: 0.03881, train sloss: 0.11829, train vloss: 0.15121
========evaluating after 9 epochs========
slot_acc = 0.9431787360998102
joint_ds_acc = 0.5395985896392731
joint_all_acc = 0.4514510442093843
best_slot_acc = 0.9547057228098725
best_joint_acc = 0.5395985896392731
best_joint_all_acc = 0.4526715486845674 at epoch 8
time: 830.734
==========================================
time: 371.478, epoch: 10, updates: 4760, train loss: 0.03409, train sloss: 0.11611, train vloss: 0.14113
time: 416.036, epoch: 10, updates: 4780, train loss: 0.03320, train sloss: 0.10135, train vloss: 0.13410
time: 429.660, epoch: 10, updates: 4800, train loss: 0.03133, train sloss: 0.10949, train vloss: 0.12485
time: 416.197, epoch: 10, updates: 4820, train loss: 0.02674, train sloss: 0.09645, train vloss: 0.11965
time: 442.657, epoch: 10, updates: 4840, train loss: 0.03057, train sloss: 0.11223, train vloss: 0.12788
time: 449.356, epoch: 10, updates: 4860, train loss: 0.03229, train sloss: 0.10722, train vloss: 0.14516
time: 411.791, epoch: 10, updates: 4880, train loss: 0.02992, train sloss: 0.11019, train vloss: 0.12511
time: 456.364, epoch: 10, updates: 4900, train loss: 0.03947, train sloss: 0.10111, train vloss: 0.11900
time: 458.465, epoch: 10, updates: 4920, train loss: 0.05785, train sloss: 0.10042, train vloss: 0.12633
time: 434.590, epoch: 10, updates: 4940, train loss: 0.04127, train sloss: 0.13045, train vloss: 0.14709
time: 430.986, epoch: 10, updates: 4960, train loss: 0.04858, train sloss: 0.11484, train vloss: 0.13184
time: 453.717, epoch: 10, updates: 4980, train loss: 0.03430, train sloss: 0.11418, train vloss: 0.13630
time: 408.135, epoch: 10, updates: 5000, train loss: 0.03986, train sloss: 0.12625, train vloss: 0.13434
time: 430.204, epoch: 10, updates: 5020, train loss: 0.04109, train sloss: 0.11686, train vloss: 0.13098
time: 434.573, epoch: 10, updates: 5040, train loss: 0.02689, train sloss: 0.10317, train vloss: 0.12497
time: 445.474, epoch: 10, updates: 5060, train loss: 0.05108, train sloss: 0.12291, train vloss: 0.13588
time: 460.556, epoch: 10, updates: 5080, train loss: 0.06299, train sloss: 0.12125, train vloss: 0.15342
time: 396.515, epoch: 10, updates: 5100, train loss: 0.04761, train sloss: 0.12062, train vloss: 0.14043
time: 462.924, epoch: 10, updates: 5120, train loss: 0.03502, train sloss: 0.11277, train vloss: 0.14004
time: 428.754, epoch: 10, updates: 5140, train loss: 0.03323, train sloss: 0.10465, train vloss: 0.11919
time: 516.991, epoch: 10, updates: 5160, train loss: 0.06559, train sloss: 0.11842, train vloss: 0.13988
time: 428.808, epoch: 10, updates: 5180, train loss: 0.07499, train sloss: 0.10999, train vloss: 0.13979
time: 403.396, epoch: 10, updates: 5200, train loss: 0.05016, train sloss: 0.11519, train vloss: 0.13603
time: 436.030, epoch: 10, updates: 5220, train loss: 0.05320, train sloss: 0.11953, train vloss: 0.13599
time: 458.150, epoch: 10, updates: 5240, train loss: 0.03609, train sloss: 0.10833, train vloss: 0.13203
time: 398.595, epoch: 10, updates: 5260, train loss: 0.02793, train sloss: 0.09906, train vloss: 0.11905
========evaluating after 10 epochs========
slot_acc = 0.9528071602929211
joint_ds_acc = 0.5305126118795769
joint_all_acc = 0.462435584486032
best_slot_acc = 0.9547057228098725
best_joint_acc = 0.5395985896392731
best_joint_all_acc = 0.462435584486032 at epoch 10
time: 935.815
==========================================
time: 247.893, epoch: 11, updates: 5280, train loss: 0.04813, train sloss: 0.10545, train vloss: 0.12775
time: 447.299, epoch: 11, updates: 5300, train loss: 0.17110, train sloss: 0.13926, train vloss: 0.15288
time: 484.214, epoch: 11, updates: 5320, train loss: 0.06743, train sloss: 0.11292, train vloss: 0.12344
time: 441.619, epoch: 11, updates: 5340, train loss: 0.09409, train sloss: 0.11389, train vloss: 0.13598
time: 451.202, epoch: 11, updates: 5360, train loss: 0.05860, train sloss: 0.11456, train vloss: 0.13094
time: 396.042, epoch: 11, updates: 5380, train loss: 0.05347, train sloss: 0.11212, train vloss: 0.12412
time: 468.853, epoch: 11, updates: 5400, train loss: 0.04702, train sloss: 0.11922, train vloss: 0.12494
time: 403.952, epoch: 11, updates: 5420, train loss: 0.03628, train sloss: 0.10368, train vloss: 0.11871
time: 470.905, epoch: 11, updates: 5440, train loss: 0.05131, train sloss: 0.10290, train vloss: 0.11163
time: 487.984, epoch: 11, updates: 5460, train loss: 0.06325, train sloss: 0.11163, train vloss: 0.12960
time: 483.759, epoch: 11, updates: 5480, train loss: 0.03913, train sloss: 0.11729, train vloss: 0.13486
time: 481.130, epoch: 11, updates: 5500, train loss: 0.04060, train sloss: 0.10730, train vloss: 0.12544
time: 446.756, epoch: 11, updates: 5520, train loss: 0.03614, train sloss: 0.11777, train vloss: 0.12916
time: 500.387, epoch: 11, updates: 5540, train loss: 0.03309, train sloss: 0.10307, train vloss: 0.12702
time: 513.029, epoch: 11, updates: 5560, train loss: 0.03871, train sloss: 0.10991, train vloss: 0.13693
time: 451.717, epoch: 11, updates: 5580, train loss: 0.04064, train sloss: 0.10386, train vloss: 0.12520
time: 488.556, epoch: 11, updates: 5600, train loss: 0.03212, train sloss: 0.11102, train vloss: 0.13168
time: 469.377, epoch: 11, updates: 5620, train loss: 0.03385, train sloss: 0.10731, train vloss: 0.13304
time: 477.955, epoch: 11, updates: 5640, train loss: 0.03352, train sloss: 0.11354, train vloss: 0.13801
time: 483.192, epoch: 11, updates: 5660, train loss: 0.03834, train sloss: 0.11045, train vloss: 0.13503
time: 442.349, epoch: 11, updates: 5680, train loss: 0.03441, train sloss: 0.10546, train vloss: 0.12660
time: 495.140, epoch: 11, updates: 5700, train loss: 0.03418, train sloss: 0.10608, train vloss: 0.12610
time: 449.574, epoch: 11, updates: 5720, train loss: 0.03828, train sloss: 0.11697, train vloss: 0.12515
time: 479.581, epoch: 11, updates: 5740, train loss: 0.04765, train sloss: 0.11483, train vloss: 0.13791
time: 424.334, epoch: 11, updates: 5760, train loss: 0.03399, train sloss: 0.10497, train vloss: 0.12638
time: 485.699, epoch: 11, updates: 5780, train loss: 0.04826, train sloss: 0.11090, train vloss: 0.13325
========evaluating after 11 epochs========
slot_acc = 0.9534852183346895
joint_ds_acc = 0.543802549498237
joint_all_acc = 0.47789530783835094
best_slot_acc = 0.9547057228098725
best_joint_acc = 0.543802549498237
best_joint_all_acc = 0.47789530783835094 at epoch 11
time: 1054.314
==========================================
time: 80.999, epoch: 12, updates: 5800, train loss: 0.03670, train sloss: 0.07973, train vloss: 0.08372
time: 459.361, epoch: 12, updates: 5820, train loss: 0.04376, train sloss: 0.09723, train vloss: 0.12183
time: 494.055, epoch: 12, updates: 5840, train loss: 0.03416, train sloss: 0.10282, train vloss: 0.11812
time: 420.733, epoch: 12, updates: 5860, train loss: 0.03112, train sloss: 0.09717, train vloss: 0.11088
time: 504.856, epoch: 12, updates: 5880, train loss: 0.03126, train sloss: 0.10232, train vloss: 0.11466
time: 478.478, epoch: 12, updates: 5900, train loss: 0.02895, train sloss: 0.11077, train vloss: 0.11706
time: 456.122, epoch: 12, updates: 5920, train loss: 0.04499, train sloss: 0.10056, train vloss: 0.11848
time: 425.302, epoch: 12, updates: 5940, train loss: 0.05135, train sloss: 0.11855, train vloss: 0.13648
time: 424.383, epoch: 12, updates: 5960, train loss: 0.04144, train sloss: 0.10874, train vloss: 0.12117
time: 469.552, epoch: 12, updates: 5980, train loss: 0.03847, train sloss: 0.10528, train vloss: 0.11657
time: 453.343, epoch: 12, updates: 6000, train loss: 0.02584, train sloss: 0.09489, train vloss: 0.11051
time: 426.917, epoch: 12, updates: 6020, train loss: 0.03488, train sloss: 0.10420, train vloss: 0.11192
time: 454.001, epoch: 12, updates: 6040, train loss: 0.02349, train sloss: 0.10323, train vloss: 0.11046
time: 528.822, epoch: 12, updates: 6060, train loss: 0.03739, train sloss: 0.11172, train vloss: 0.12921
time: 465.218, epoch: 12, updates: 6080, train loss: 0.03088, train sloss: 0.10595, train vloss: 0.13398
time: 483.476, epoch: 12, updates: 6100, train loss: 0.02680, train sloss: 0.10252, train vloss: 0.11578
time: 466.774, epoch: 12, updates: 6120, train loss: 0.02480, train sloss: 0.09954, train vloss: 0.10498
time: 437.956, epoch: 12, updates: 6140, train loss: 0.06482, train sloss: 0.10727, train vloss: 0.11466
time: 476.546, epoch: 12, updates: 6160, train loss: 0.05203, train sloss: 0.11298, train vloss: 0.12699
time: 422.147, epoch: 12, updates: 6180, train loss: 0.02188, train sloss: 0.08954, train vloss: 0.10237
time: 465.289, epoch: 12, updates: 6200, train loss: 0.04886, train sloss: 0.11375, train vloss: 0.11799
time: 491.304, epoch: 12, updates: 6220, train loss: 0.04275, train sloss: 0.10789, train vloss: 0.12993
time: 471.470, epoch: 12, updates: 6240, train loss: 0.03865, train sloss: 0.09749, train vloss: 0.11866