-
Notifications
You must be signed in to change notification settings - Fork 1
/
face_alignment.py
227 lines (193 loc) · 8.32 KB
/
face_alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
import scipy.ndimage
import PIL.Image
import cv2
import PIL
from PIL import Image
from imutils import face_utils
from matplotlib import pyplot as plt
from tensorflow.keras.utils import get_file
def unpack_bz2(src_path):
import bz2
data = bz2.BZ2File(src_path).read()
dst_path = src_path[:-4]
with open(dst_path, 'wb') as fp:
fp.write(data)
return dst_path
LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
LANDMARKS_MODEL_PATH = unpack_bz2(get_file(
'shape_predictor_68_face_landmarks.dat.bz2', LANDMARKS_MODEL_URL, cache_subdir='pretrained_models/'))
# detector = dlib.get_frontal_face_detector()
# shape_predictor = dlib.shape_predictor(LANDMARKS_MODEL_PATH)
def image_align(img, face_landmarks, save = False, output_size=1024, transform_size=4096, enable_padding=True, x_scale=1, y_scale=1, em_scale=0.1, alpha=False):
# Align function from FFHQ dataset pre-processing step
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
lm = np.array(face_landmarks)
lm_chin = lm[0 : 17] # left-right
lm_eyebrow_left = lm[17 : 22] # left-right
lm_eyebrow_right = lm[22 : 27] # left-right
lm_nose = lm[27 : 31] # top-down
lm_nostrils = lm[31 : 36] # top-down
lm_eye_left = lm[36 : 42] # left-clockwise
lm_eye_right = lm[42 : 48] # left-clockwise
lm_mouth_outer = lm[48 : 60] # left-clockwise
lm_mouth_inner = lm[60 : 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
x *= x_scale
y = np.flipud(x) * [-y_scale, y_scale]
c = eye_avg + eye_to_mouth * em_scale
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
img = PIL.Image.fromarray(img)
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = np.uint8(np.clip(np.rint(img), 0, 255))
if alpha:
mask = 1-np.clip(3.0 * mask, 0.0, 1.0)
mask = np.uint8(np.clip(np.rint(mask*255), 0, 255))
img = np.concatenate((img, mask), axis=2)
img = PIL.Image.fromarray(img, 'RGBA')
else:
img = PIL.Image.fromarray(img, 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
if save:
img.save(save, 'PNG')
return np.array(img)
def get_boundingbox_and_landmarks(im, plot = False):
import dlib
detector = dlib.get_frontal_face_detector()
shape_predictor = dlib.shape_predictor(LANDMARKS_MODEL_PATH)
if not type(im) is np.ndarray:
im = np.array(im)
rects = detector(im, 1)
if len(rects) == 0:
print("[WARNING]", len(rects), " faces detected detected")
return None,None
if len(rects) > 1:
print("[WARNING]", len(rects), " faces detected detected")
rect = rects[0]
face_landmarks = get_landmarks(shape_predictor,im,rect)
if plot:
plot_rects(im, rects[0])
plot_landmarks(im,face_landmarks)
plt.axis("off")
return rect, face_landmarks
def image_resize(image,
width = None,
height = None,
inter = cv2.INTER_AREA):
image = np.array(image)
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
elif width is None:
r = height / float(h)
dim = (int(w * r), height)
elif height is None:
r = width / float(w)
dim = (width, int(h * r))
else:
dim = (width, height)
resized = cv2.resize(image, dim, interpolation = inter)
resized = PIL.Image.fromarray(resized)
return resized
def add_borders(img):
old_size = img.size
if np.max(old_size) > 1024:
idx = np.argmax(old_size)
if idx == 1:
img = image_resize(img,width = None, height = 1024)
else:
img = image_resize(img,width = 1024,height = None)
new_size = (1024, 1024)
new_img = Image.new("RGB", new_size)
new_img.paste(img, (int((new_size[0]-old_size[0])/2),int((new_size[1]-old_size[1])/2)))
return new_img
def get_mask(im,rect,shape,use_grabcut = True, scale_mask = 1.5 ):
shape = face_utils.shape_to_np(shape)
# we extract the face
vertices = cv2.convexHull(shape)
mask = np.zeros(im.shape[:2],np.uint8)
cv2.fillConvexPoly(mask, vertices, 1)
if use_grabcut:
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
rect = (0,0,im.shape[1],im.shape[2])
(x,y),radius = cv2.minEnclosingCircle(vertices)
center = (int(x),int(y))
radius = int(radius*scale_mask)
mask = cv2.circle(mask,center,radius,cv2.GC_PR_FGD,-1)
cv2.fillConvexPoly(mask, vertices, cv2.GC_FGD)
cv2.grabCut(im,mask,rect,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_MASK)
mask = np.where((mask==2)|(mask==0),0,1)
return mask.astype("uint8")
def plot_rects(im, rect):
x1,y1 = rect.tl_corner().x,rect.tl_corner().y
x2,y2 = rect.br_corner().x,rect.br_corner().y
image = cv2.rectangle(im, (x1,y1), (x2,y2) , color = (0,0,255), thickness = 4)
return image
def get_landmarks(shape_predictor,img,rect):
try:
face_landmarks = [(item.x, item.y) for item in shape_predictor(img, rect).parts()]
return face_landmarks
except:
print("Exception in get_landmarks()!")
def plot_landmarks(im,face_landmarks):
landmark_image = im.copy()
for point in face_landmarks:
cv2.circle(landmark_image,point,10,(255,0,0),-1)
plt.imshow(landmark_image)
def preprocess_img(img, save = False):
if not img.mode == "RGB":
img = img.convert("RGB")
img = add_borders(img)
rect, face_landmarks = get_boundingbox_and_landmarks(img, plot = False)
if face_landmarks is None:
print("[WARNING], skipping FFHQ alignment step file:", save)
else:
img = image_align(img, face_landmarks, save = False)
if save:
img.save(save)
print("[INFO] Aligned image saved to:", save)
return img