-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday21.rs
276 lines (231 loc) · 7.93 KB
/
day21.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//! [Day 21: Keypad Conundrum](https://adventofcode.com/2024/day/21)
use itertools::Itertools;
use rustc_hash::FxHashMap;
use std::collections::VecDeque;
type ButtonSequences = FxHashMap<(char, char), Vec<String>>;
fn compute_sequences(keypad: &[&str]) -> ButtonSequences {
let mut positions = FxHashMap::default();
// size of the keypad
let size_x = i32::try_from(keypad[0].len()).unwrap();
let size_y = i32::try_from(keypad.len()).unwrap();
// positions of each button
for (y, row) in keypad.iter().enumerate() {
for (x, button) in row.chars().enumerate() {
if button != ' ' {
let x = i32::try_from(x).unwrap();
let y = i32::try_from(y).unwrap();
positions.insert(button, (x, y));
}
}
}
// find all paths between each pair of buttons
let mut sequences: ButtonSequences = FxHashMap::default();
for &from_button in positions.keys() {
for &to_button in positions.keys() {
// same button
if from_button == to_button {
// nota: A to activate/push the button
sequences.insert((from_button, to_button), vec!["A".to_string(); 1]);
continue;
}
let mut possibilities = Vec::new();
let mut queue = VecDeque::new();
let mut shortest = usize::MAX;
let mut visited = FxHashMap::default();
queue.push_front((positions[&from_button], String::new()));
visited.insert(positions[&from_button], 0);
while let Some(((x, y), moves)) = queue.pop_back() {
// we reach the end
if (x, y) == positions[&to_button] {
if moves.len() < shortest {
shortest = moves.len();
possibilities.clear();
}
if moves.len() == shortest {
possibilities.push(format!("{moves}A"));
}
continue;
}
// try all directions
for (nx, ny, nm) in [
(x - 1, y, '<'),
(x + 1, y, '>'),
(x, y - 1, '^'),
(x, y + 1, 'v'),
] {
// outside the keypad
if nx < 0 || nx >= size_x || ny < 0 || ny >= size_y {
continue;
}
let button = keypad[usize::try_from(ny).unwrap()]
.chars()
.nth(usize::try_from(nx).unwrap())
.unwrap();
// no button
if button == ' ' {
continue;
}
// if not yet visited of found a shorter path
if *visited.get(&(nx, ny)).unwrap_or(&usize::MAX) >= moves.len() {
queue.push_front(((nx, ny), format!("{moves}{nm}")));
visited.insert((nx, ny), moves.len());
}
}
}
sequences.insert((from_button, to_button), possibilities);
}
}
sequences
}
struct Solver {
numerical_sequences: ButtonSequences,
directional_sequences: ButtonSequences,
}
impl Solver {
fn new() -> Self {
// the layout of the numerical keypad
// +---+---+---+
// | 7 | 8 | 9 |
// +---+---+---+
// | 4 | 5 | 6 |
// +---+---+---+
// | 1 | 2 | 3 |
// +---+---+---+
// | 0 | A |
// +---+---+
let numerical_keypad = ["789", "456", "123", " 0A"];
// the layout of the directional keypad
// +---+---+
// | ^ | A |
// +---+---+---+
// | < | v | > |
// +---+---+---+
let directional_keypad = [" ^A", "<v>"];
Self {
numerical_sequences: compute_sequences(&numerical_keypad),
directional_sequences: compute_sequences(&directional_keypad),
}
}
/// find all combinations of sequences to enter the code
fn find_code_seqs(&self, code: &str) -> Vec<String> {
let mut c = Vec::new();
for i in 0..code.len() {
let button_from = if i == 0 {
'A' // we start at button A
} else {
code.chars().nth(i - 1).unwrap()
};
let button_to = code.chars().nth(i).unwrap();
let seqs = self.numerical_sequences[&(button_from, button_to)].clone(); // ways to k1→k2
c.push(seqs);
}
c.iter()
.multi_cartesian_product()
.map(|k| k.iter().join(""))
.collect::<Vec<_>>()
}
/// compute recursively the length of the sequence to play the `targetted_seq`
/// with `robots` that control directional keypads
fn compute_seq_length(
&self,
targetted_seq: &str,
robots: u32,
cache: &mut FxHashMap<(String, u32), u64>,
) -> u64 {
if let Some(found) = cache.get(&(targetted_seq.to_string(), robots)) {
return *found;
}
if robots <= 1 {
return (0..targetted_seq.len())
.map(|i| {
let k1 = if i == 0 {
'A'
} else {
targetted_seq.chars().nth(i - 1).unwrap()
};
let k2 = targetted_seq.chars().nth(i).unwrap();
// all seqs have same length
self.directional_sequences[&(k1, k2)][0].len() as u64
})
.sum();
}
let result = (0..targetted_seq.len())
.map(|i| {
let button_from = if i == 0 {
'A'
} else {
targetted_seq.chars().nth(i - 1).unwrap()
};
let button_to = targetted_seq.chars().nth(i).unwrap();
self.directional_sequences[&(button_from, button_to)]
.iter()
.map(|seq| self.compute_seq_length(seq, robots - 1, cache))
.min()
.unwrap()
})
.sum();
cache.insert((targetted_seq.to_string(), robots), result);
result
}
/// computes the compleixity of to enter `code` with a chain of `robots` robots
fn complexity(&self, code: &str, robots: u32) -> u64 {
let seqs = self.find_code_seqs(code);
let mut cache = FxHashMap::default();
let min_length = seqs
.iter()
.map(|seq| self.compute_seq_length(seq, robots, &mut cache))
.min()
.unwrap();
let num_code = code
.chars()
.map_while(|c| c.to_digit(10))
.fold(0, |acc, d| acc * 10 + d);
min_length * u64::from(num_code)
}
}
struct Puzzle {
codes: Vec<String>,
solver: Solver,
}
impl Puzzle {
fn new(data: &str) -> Self {
Self {
codes: data.lines().map(std::string::ToString::to_string).collect(),
solver: Solver::new(),
}
}
/// Solve part one.
fn part1(&self) -> u64 {
self.codes
.iter()
.map(|code| self.solver.complexity(code, 2))
.sum()
}
/// Solve part two.
fn part2(&self) -> u64 {
self.codes
.iter()
.map(|code| self.solver.complexity(code, 25))
.sum()
}
}
/// # Panics
#[must_use]
pub fn solve(data: &str) -> (u64, u64) {
let puzzle = Puzzle::new(data);
(puzzle.part1(), puzzle.part2())
}
pub fn main() {
let args = aoc::parse_args();
args.run(solve);
}
#[cfg(test)]
mod test {
use super::*;
const TEST_INPUT: &str = include_str!("test.txt");
#[test]
fn test01() {
let puzzle = Puzzle::new(TEST_INPUT);
assert_eq!(puzzle.part1(), 126384);
}
}