-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpost-process.py
148 lines (127 loc) · 7.22 KB
/
post-process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import subprocess
import warnings
from pathlib import Path
from joblib import Parallel, delayed
from utils import read_parameters, get_key_def, load_checkpoint, compare_config_yamls
def subprocess_command(command: str):
print(f'Python\'s subprocess executing following command:\n{command}')
subproc = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout = subproc.stdout.decode("utf-8") # specify encoding
print(stdout)
if subproc.stderr:
warnings.warn(str(subproc.stderr))
def main(img_path, params):
print(f'Post-processing {img_path}')
# post-processing parameters
classes = get_key_def('classes', params['global'], expected_type=dict)
r2v_cellsize_resamp = get_key_def('r2vect_cellsize_resamp', params['post-processing'], default=0, expected_type=int)
removeholesunder = get_key_def('removeholesunder', params['post-processing'], default=0, expected_type=int)
simptol = get_key_def('simptol', params['post-processing'], default=0, expected_type=int)
redbenddiamtol = get_key_def('redbenddiamtol', params['post-processing'], default=0, expected_type=int)
recttol = get_key_def('recttol', params['post-processing']['buildings'], default=0, expected_type=int)
compacttol = get_key_def('compacttol', params['post-processing']['buildings'], default=0, expected_type=int)
patterntol = get_key_def('patterntol', params['post-processing']['buildings'], default=20, expected_type=int)
orthogonalize_ang_thresh = get_key_def('orthogonalize_ang_thresh', params['post-processing']['buildings'],
default=0, expected_type=int)
to_cog = get_key_def('to_cog', params['post-processing'], default=True, expected_type=bool)
keep_non_cog = get_key_def('keep_non_cog', params['post-processing'], default=True, expected_type=bool)
# validate inputted classes
if 0 in classes.keys():
warnings.warn("Are you sure value 0 is of interest? It is usually used to set background class, "
"i.e. non-relevant class. Will add 1 to all class values inputted, e.g. 0,1,2,3 --> 1,2,3,4")
classes = {cl_val + 1: name for cl_val, name in classes}
# set name of output gpkg: myinference.tif will become myinference.gpkg
# FIXME: let user set output directory
final_gpkg = Path(img_path).parent / f'{Path(img_path).stem}.gpkg'
if final_gpkg.is_file():
warnings.warn(f'Output geopackage exists: {final_gpkg}. Skipping to next inference...')
else:
if len(classes.keys()) == 1 and classes[1] == 'roads':
command = f'qgis_process run model:gdl-roads -- ' \
f'inputraster="{img_path}" ' \
f'r2vcellsizeresamp={r2v_cellsize_resamp} ' \
f'native:package_1:dest-gpkg={final_gpkg}'
elif len(classes.keys()) == 1 and classes[1] == 'buildings':
command = f'qgis_process run model:gdl-buildings -- ' \
f'srcinfraster="{img_path}" ' \
f'r2vcellsizeresamp={r2v_cellsize_resamp} ' \
f'native:package_1:dest-gpkg={final_gpkg}'
elif len(classes) == 4:
command = f'qgis_process run model:gdl-{len(classes)}classes -- ' \
f'srcinfraster="{img_path}" ' \
f'r2vcellsizeresamp={r2v_cellsize_resamp} ' \
f'native:package_1:dest-gpkg={final_gpkg}'
else:
raise NotImplementedError(f'Cannot post-process inference with {len(classes.keys())} classes')
subprocess_command(command)
# COG
if to_cog:
# print(f'COGuing {count} of {len(globbed_imgs_paths)}...')
img_path_cog = img_path.parent / f'{img_path.stem}_cog{img_path.suffix}'
if img_path_cog.is_file():
warnings.warn(f'Output cog exists: {str(img_path_cog)}. Skipping to next inference...')
else:
cog_command = f'gdal_translate {img_path} {img_path_cog} -co TILED=YES -co COPY_SRC_OVERVIEWS=YES ' \
f'-co COMPRESS=LZW'
subprocess_command(cog_command)
if keep_non_cog is False and img_path_cog.is_file():
try:
img_path.unlink(missing_ok=True)
except TypeError:
img_path.unlink()
except FileNotFoundError:
print(f'Could not delete non cog inference: {keep_non_cog}')
if __name__ == '__main__':
print('\n\nStart:\n\n')
parser = argparse.ArgumentParser(usage="%(prog)s [-h] [-p YAML] [-i MODEL IMAGE] ",
description='Inference and Benchmark on images using trained model')
parser.add_argument('-p', '--param', metavar='yaml_file', nargs=1,
help='Path to parameters stored in yaml')
parser.add_argument('-i', '--input', metavar='model_pth img_dir', nargs=2,
help='model_path and image_dir')
args = parser.parse_args()
# if a yaml is inputted, get those parameters and get model state_dict to overwrite global parameters afterwards
if args.param:
input_params = read_parameters(args.param[0])
model_ckpt = get_key_def('state_dict_path', input_params['inference'], expected_type=str)
# load checkpoint
checkpoint = load_checkpoint(model_ckpt)
if 'params' not in checkpoint.keys():
warnings.warn('No parameters found in checkpoint. Use GDL version 1.3 or more.')
else:
params = checkpoint['params']
# overwrite with inputted parameters
compare_config_yamls(yaml1=params, yaml2=input_params, update_yaml1=True)
del checkpoint
del input_params
# elif input is a model checkpoint and an image directory, we'll rely on the yaml saved inside the model (pth.tar)
elif args.input:
model_ckpt = Path(args.input[0])
image = args.input[1]
# load checkpoint
checkpoint = load_checkpoint(model_ckpt)
if 'params' not in checkpoint.keys():
raise KeyError('No parameters found in checkpoint. Use GDL version 1.3 or more.')
else:
# set parameters for inference from those contained in checkpoint.pth.tar
params = checkpoint['params']
del checkpoint
# overwrite with inputted parameters
params['inference']['state_dict_path'] = args.input[0]
params['inference']['img_dir_or_csv_file'] = args.input[1]
else:
print('use the help [-h] option for correct usage')
raise SystemExit
state_dict_path = get_key_def('state_dict_path', params['inference'])
working_folder = Path(state_dict_path).parent
#ckpt_num_bands = get_key_def('num_bands', params['global'], expected_type=int)
#glob_pattern = f"inference_{ckpt_num_bands}bands/*_inference.tif"
glob_pattern = f"**/*_inference.tif"
globbed_imgs_paths = list(working_folder.glob(glob_pattern))
if not globbed_imgs_paths:
raise FileNotFoundError(f'No tif images found to post-process in {working_folder}')
else:
print(f"Found {len(globbed_imgs_paths)} inferences to post-process")
Parallel(n_jobs=len(globbed_imgs_paths))(delayed(main)(file, params=params) for file in globbed_imgs_paths)
#main(params)