diff --git a/coq/Proofs/Revocation.v b/coq/Proofs/Revocation.v index 16605d19a..65979db85 100644 --- a/coq/Proofs/Revocation.v +++ b/coq/Proofs/Revocation.v @@ -1062,6 +1062,8 @@ Module RevocationProofs. (m : Type -> Type) (M : Monad m) (EMa : relation (m A)) + (RetProper: Proper (Ea ==> EMa) ret) + (BindProper: Proper ((EMa) ==> (Ea ==> EMa) ==> (EMa)) (@bind m M A A)) (f f': A -> B -> C -> m A) (l1 l1' : list B) (l2 l2' : list C) @@ -1516,7 +1518,7 @@ Module RevocationProofs. (Ea:=repr_fold2_eq) (Eb:=eq) (Ec:=struct_field_eq); - [reflexivity|assumption|repeat split;auto|]. + [typeclasses eauto|typeclasses eauto|reflexivity|assumption|repeat split;auto|]. (* proper for 'f' *) intros a a' Ea. @@ -1571,7 +1573,7 @@ Module RevocationProofs. eapply monadic_fold_left2_proper with (Ea:=repr_fold2_eq) (Eb:=eq) - (Ec:=struct_field_eq); + (Ec:=struct_field_eq);try typeclasses eauto; [reflexivity|assumption|repeat split;auto|]. (* proper for 'f' *) @@ -1627,7 +1629,7 @@ Module RevocationProofs. eapply monadic_fold_left2_proper with (Ea:=repr_fold2_eq) (Eb:=eq) - (Ec:=struct_field_eq); + (Ec:=struct_field_eq);try typeclasses eauto; [reflexivity|assumption|repeat split;auto|]. (* proper for 'f' *) @@ -1700,7 +1702,7 @@ Module RevocationProofs. eapply monadic_fold_left2_proper with (Ea:=repr_fold2_eq) (Eb:=eq) - (Ec:=struct_field_eq); + (Ec:=struct_field_eq);try typeclasses eauto; [reflexivity|assumption|repeat split;auto|]. (* proper for 'f' *)