diff --git a/packages/redgeometry/src/primitives/ray.ts b/packages/redgeometry/src/primitives/ray.ts index ca9f48c..8d6341c 100644 --- a/packages/redgeometry/src/primitives/ray.ts +++ b/packages/redgeometry/src/primitives/ray.ts @@ -160,6 +160,48 @@ export class Ray3 { return new Ray3(p, v); } + /** + * Returns the parameters of the closest points which lie on the rays `ray1` and `ray2` + * or `undefined` if the rays are parallel. + */ + public static getClosestParameter(ray1: Ray3, ray2: Ray3): [number, number] | undefined { + // Reference: https://math.stackexchange.com/a/4764188 + // ``` + // p1 + t1 * v1 = p2 + t2 * v2 + // t1 * v1 - t2 * v2 = p2 - p1 + // ``` + const vc = ray1.v.cross(ray2.v); + const den = vc.lenSq(); + + if (den === 0) { + // Rays are parallel + return undefined; + } + + // `v = p2 - p1` + const v = ray2.p.sub(ray1.p); + + // We can elimate `t2` by applying the cross product with `v2` so that `v2 cross v2` vanishes: + // ``` + // t1 * (v1 cross v2) - t2 * (v2 cross v2) = v cross v2 + // t1 * (v1 cross v2) = v cross v2 + // t1 * (v1 cross v2) dot (v1 cross v2) = (v cross v2) dot (v1 cross v2) + // t1 = ((v cross v2) dot (v1 cross v2)) / ((v1 cross v2) dot (v1 cross v2)) + // ``` + const t1 = v.cross(ray2.v).dot(vc) / den; + + // Similarly, we eliminate `t1` and use the anticommutativity property of the cross product: + // ``` + // t1 * (v1 cross v1) - t2 * (v2 cross v1) = v cross v1 + // t2 * (v1 cross v2) = v cross v1 + // t2 * (v1 cross v2) dot (v1 cross v2) = (v cross v1) dot (v1 cross v2) + // t2 = ((v cross v1) dot (v1 cross v2)) / ((v1 cross v2) dot (v1 cross v2)) + // ``` + const t2 = v.cross(ray1.v).dot(vc) / den; + + return [t1, t2]; + } + public static toObject(ray: Ray3): { p: Point3Like; v: Vector3Like } { const p = Point3.toObject(ray.p); const v = Vector3.toObject(ray.v);