OpenVINO Execution Provider enables deep learning inference on Intel CPUs, Intel integrated GPUs and Intel® MovidiusTM Vision Processing Units (VPUs). Please refer to this page for details on the Intel hardware supported.
For build instructions, please see the BUILD page.
The table below shows the ONNX layers supported using OpenVINO Execution Provider and the mapping between ONNX layers and OpenVINO layers. The below table also lists the Intel hardware support for each of the layers. CPU refers to Intel® Atom, Core, and Xeon processors. GPU refers to the Intel Integrated Graphics. VPU refers to USB based Intel® MovidiusTM VPUs as well as Intel® Vision accelerator Design with Intel Movidius TM MyriadX VPU. FPGA refers to Intel® Vision Accelerator Design with an Intel® Arria® 10 FPGA.
ONNX Layers | OpenVINO Layers | CPU | GPU | VPU | FPGA |
---|---|---|---|---|---|
Add | Eltwise (operation=sum) | Yes | Yes | Yes | Yes |
AveragePool | Pooling(pool_method=avg) | Yes | Yes | Yes | Yes |
BatchNormalization | Scaleshift (can be fused into Convlution or Fully Connected) | Yes | Yes | Yes | Yes |
Concat | Concat | Yes | Yes | Yes | Yes |
Conv | Convolution | Yes | Yes | Yes | Yes |
Div | Eltwise(operation = mul)->Power | Yes | Yes | Yes | Yes |
Dropout | Ignored | Yes | Yes | Yes | Yes |
Flatten | Reshape | Yes | Yes | Yes | No |
Gemm | FullyConnected | Yes | Yes | Yes | Yes |
GlobalAveragePool | Pooling | Yes | Yes | Yes | Yes |
GlobalMaxPool | Pooling | Yes | Yes | Yes | Yes |
Identity | Ignored | Yes | Yes | Yes | Yes |
ImageScaler | ScaleShift | Yes | Yes | Yes | Yes |
LRN | Norm | Yes | Yes | Yes | Yes |
MatMul | FullyConnected | Yes | Yes* | No | Yes |
MaxPool | Pooling(pool_method=max) | Yes | Yes | Yes | Yes |
Mul | Eltwise(operation=mul) | Yes | Yes | Yes | No |
Relu | ReLU | Yes | Yes | Yes | Yes |
Reshape | Reshape | Yes | Yes | Yes | No |
Softmax | SoftMax | Yes | Yes | Yes | No |
Sum | Eltwise(operation=sum) | Yes | Yes | Yes | Yes |
Sub | Power->Eltwise(operation = sum) | Yes | Yes | Yes | Yes |
Transpose | Permute | Yes | Yes | Yes | No |
UnSqueeze | Reshape | Yes | Yes | Yes | No |
LeakyRelu | ReLU | Yes | Yes | Yes | Yes |
*MatMul is supported in GPU only when the following layer is an Add layer in the topology.
Below topologies are supported from ONNX open model zoo using OpenVINO Execution Provider
Topology | CPU | GPU | VPU | FPGA |
---|---|---|---|---|
bvlc_alexnet | Yes | Yes | Yes | Yes*** |
bvlc_googlenet | Yes | Yes | Yes | Yes*** |
bvlc_reference_caffenet | Yes | Yes | Yes | Yes*** |
bvlc_reference_rcnn_ilsvrc13 | Yes | Yes | Yes | Yes*** |
densenet121 | Yes | Yes | Yes | Yes*** |
Inception_v1 | Yes | Yes | Yes** | Yes*** |
Inception_v2 | Yes | Yes | Yes | Yes*** |
Shufflenet | Yes | Yes | Yes | Yes*** |
Zfnet512 | Yes | Yes | Yes | Yes*** |
Squeeznet 1.1 | Yes | Yes | Yes | Yes*** |
Resnet18v1 | Yes | Yes | Yes | Yes*** |
Resnet34v1 | Yes | Yes | Yes | Yes*** |
Resnet50v1 | Yes | Yes | Yes | Yes*** |
Resnet101v1 | Yes | Yes | Yes | Yes*** |
Resnet152v1 | Yes | Yes | Yes | Yes*** |
Resnet18v2 | Yes | Yes | Yes | Yes*** |
Resnet34v2 | Yes | Yes | Yes | Yes*** |
Resnet50v2 | Yes | Yes | Yes | Yes*** |
Resnet101v2 | Yes | Yes | Yes | Yes*** |
Resnet152v2 | Yes | Yes | Yes | Yes*** |
Mobilenetv2 | Yes | Yes | Yes | Yes*** |
vgg16 | Yes | Yes | Yes | Yes*** |
vgg19 | Yes | Yes | Yes | Yes*** |
Topology | CPU | GPU | VPU | FPGA |
---|---|---|---|---|
MNIST | Yes | Yes | Yes | Yes*** |
Topology | CPU | GPU | VPU | FPGA |
---|---|---|---|---|
TinyYOLOv2 | Yes | Yes | Yes | Yes*** |
ResNet101_DUC_HDC | Yes | No | No | Yes*** |
***FPGA only runs in HETERO mode wherein the layers that are not supported on FPGA fall back to OpenVINO CPU.
VAD-M has 8 VPUs and is suitable for applications that require multiple inferences to run in parallel. We use batching approach for performance scaling on VAD-M.
Below python code snippets provide sample classification code to batch input images, load a model and process the output results.
import onnxruntime as rt
from onnxruntime import get_device
import os
import os.path
import sys
import cv2
import numpy
import time
import glob
sess = rt.InferenceSession(str(sys.argv[1]))
print("\n")
for i in range(iters):
y = None
images = [cv2.imread(file) for file in glob.glob(str(sys.argv[2])+'/*.jpg')]
for img in images:
# resizing the image
img = cv2.resize(img, (224,224))
# convert image to numpy
x = numpy.asarray(img).astype(numpy.float32)
x = numpy.transpose(x, (2,0,1))
# expand the dimension and batch the images
x = numpy.expand_dims(x,axis=0)
if y is None:
y = x
else:
y = numpy.concatenate((y,x), axis=0)
res = sess.run([sess.get_outputs()[0].name], {sess.get_inputs()[0].name: y})
print("Output probabilities:")
i = 0
for k in range(batch_size):
for prob in res[0][k][0]:
print("%d : %7.4f" % (i, prob))