diff --git a/python/nx-cugraph/_nx_cugraph/__init__.py b/python/nx-cugraph/_nx_cugraph/__init__.py index 9bca031a2f0..2f283aa153c 100644 --- a/python/nx-cugraph/_nx_cugraph/__init__.py +++ b/python/nx-cugraph/_nx_cugraph/__init__.py @@ -43,6 +43,7 @@ "chvatal_graph", "circular_ladder_graph", "clustering", + "complement", "complete_bipartite_graph", "complete_graph", "complete_multipartite_graph", @@ -105,6 +106,7 @@ "path_graph", "petersen_graph", "reciprocity", + "reverse", "sedgewick_maze_graph", "single_source_shortest_path_length", "single_target_shortest_path_length", diff --git a/python/nx-cugraph/nx_cugraph/algorithms/__init__.py b/python/nx-cugraph/nx_cugraph/algorithms/__init__.py index 08658ad94cb..7aafa85f5b7 100644 --- a/python/nx-cugraph/nx_cugraph/algorithms/__init__.py +++ b/python/nx-cugraph/nx_cugraph/algorithms/__init__.py @@ -17,6 +17,7 @@ community, components, link_analysis, + operators, shortest_paths, traversal, tree, @@ -29,6 +30,7 @@ from .dag import * from .isolate import * from .link_analysis import * +from .operators import * from .reciprocity import * from .shortest_paths import * from .traversal import * diff --git a/python/nx-cugraph/nx_cugraph/algorithms/operators/__init__.py b/python/nx-cugraph/nx_cugraph/algorithms/operators/__init__.py new file mode 100644 index 00000000000..32fd45f5726 --- /dev/null +++ b/python/nx-cugraph/nx_cugraph/algorithms/operators/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from .unary import * diff --git a/python/nx-cugraph/nx_cugraph/algorithms/operators/unary.py b/python/nx-cugraph/nx_cugraph/algorithms/operators/unary.py new file mode 100644 index 00000000000..08abc9f2872 --- /dev/null +++ b/python/nx-cugraph/nx_cugraph/algorithms/operators/unary.py @@ -0,0 +1,55 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import cupy as cp +import networkx as nx +import numpy as np + +import nx_cugraph as nxcg +from nx_cugraph.convert import _to_graph +from nx_cugraph.utils import index_dtype, networkx_algorithm + +__all__ = ["complement", "reverse"] + + +@networkx_algorithm(version_added="24.02") +def complement(G): + G = _to_graph(G) + N = G._N + # Upcast to int64 so indices don't overflow. + edges_a_b = N * G.src_indices.astype(np.int64) + G.dst_indices + # Now compute flattened indices for all edges except self-loops + # Alt (slower): + # edges_full = np.arange(N * N) + # edges_full = edges_full[(edges_full % (N + 1)).astype(bool)] + edges_full = cp.arange(1, N * (N - 1) + 1) + cp.repeat(cp.arange(N - 1), N) + edges_comp = cp.setdiff1d( + edges_full, + edges_a_b, + assume_unique=not G.is_multigraph(), + ) + src_indices, dst_indices = cp.divmod(edges_comp, N) + return G.__class__.from_coo( + N, + src_indices.astype(index_dtype), + dst_indices.astype(index_dtype), + key_to_id=G.key_to_id, + ) + + +@networkx_algorithm(version_added="24.02") +def reverse(G, copy=True): + if not G.is_directed(): + raise nx.NetworkXError("Cannot reverse an undirected graph.") + if isinstance(G, nx.Graph): + G = nxcg.from_networkx(G, preserve_all_attrs=True) + return G.reverse(copy=copy)