forked from valeoai/FOUND
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
242 lines (201 loc) · 7.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import torch.nn as nn
import dino.vision_transformer as vits
from bkg_seg import compute_img_bkg_seg
from misc import batch_apply_bilateral_solver
class FoundModel(nn.Module):
def __init__(
self,
vit_model="dino",
vit_arch="vit_small",
vit_patch_size=8,
enc_type_feats="k",
bkg_type_feats="k",
bkg_th=0.3
):
super(FoundModel, self).__init__()
# ----------------------
# Encoder
self.vit_encoder, self.initial_dim, self.hook_features = get_vit_encoder(
vit_arch, vit_model, vit_patch_size, enc_type_feats
)
self.vit_patch_size = vit_patch_size
self.enc_type_feats = enc_type_feats
# ----------------------
# Background Segmentation
self.bkg_type_feats = bkg_type_feats
self.bkg_th = bkg_th
# ----------------------
# Define the simple decoder
self.previous_dim = self.initial_dim
self.decoder = nn.Conv2d(self.previous_dim, 1, (1, 1))
def forward_step(self, batch, decoder=None, for_eval=False):
# Make the image divisible by the patch size
if for_eval:
batch = self.make_input_divisible(batch)
_w, _h = batch.shape[-2:]
_h, _w = _h // self.vit_patch_size, _w // self.vit_patch_size
else:
# Cropping used during training, could be changed to improve
w, h = (
batch.shape[-2] - batch.shape[-2] % self.vit_patch_size,
batch.shape[-1] - batch.shape[-1] % self.vit_patch_size,
)
batch = batch[:, :, :w, :h]
w_featmap = batch.shape[-2] // self.vit_patch_size
h_featmap = batch.shape[-1] // self.vit_patch_size
# Forward pass
with torch.no_grad():
# Encoder forward pass
att = self.vit_encoder.get_last_selfattention(batch)
# Get decoder features
feats = self.extract_feats(dims=att.shape, type_feats=self.enc_type_feats)
feats = feats[:, 1:, :, :].reshape(att.shape[0], w_featmap, h_featmap, -1)
feats = feats.permute(0, 3, 1, 2)
# Apply decoder
if decoder is None:
decoder = self.decoder
preds = decoder(feats)
# return preds_masked
return preds, feats, (w_featmap, h_featmap), att
def make_input_divisible(self, x: torch.Tensor) -> torch.Tensor:
# From selfmask
"""Pad some pixels to make the input size divisible by the patch size."""
B, _, H_0, W_0 = x.shape
pad_w = (self.vit_patch_size - W_0 % self.vit_patch_size) % self.vit_patch_size
pad_h = (self.vit_patch_size - H_0 % self.vit_patch_size) % self.vit_patch_size
x = nn.functional.pad(x, (0, pad_w, 0, pad_h), value=0)
return x
def compute_background_batch(
self,
att,
shape_f,
# mlp_feats = None,
):
w_f, h_f = shape_f
# Dimensions
nb_im = att.shape[0] # Batch size
nh = att.shape[1] # Number of heads
nb_tokens = att.shape[2] # Number of tokens
# Get decoder features
feats = self.extract_feats(dims=att.shape,
# mlp_feats = mlp_feats,
type_feats=self.bkg_type_feats
)
feats = feats.reshape(nb_im, nb_tokens, -1)
bkg_mask = compute_img_bkg_seg(
att,
feats,
(w_f,h_f),
th_bkg=self.bkg_th,
dim=int(self.initial_dim / nh),
)
return bkg_mask
def get_bkg_pseudo_labels_batch(
self,
att,
shape_f,
data,
use_bilateral_solver = True,
shape=None,
):
bkg_mask_pred = self.compute_background_batch(
att, shape_f
)
# Transform bkg detection to foreground detection
# Object mask is the inverse of the bkg mask
obj_mask = (~bkg_mask_pred.bool()).float()
if use_bilateral_solver:
pseudo_labels, cnt_bs = batch_apply_bilateral_solver(data, obj_mask, shape)
return pseudo_labels, cnt_bs
else:
return obj_mask, 0
@torch.no_grad()
def decoder_load_weights(self, weights_path):
print(f"Loading model from weights {weights_path}.")
# Load states
state_dict = torch.load(weights_path)
# Decoder
self.decoder.load_state_dict(state_dict["decoder"])
self.decoder.eval()
self.decoder.to("cuda")
@torch.no_grad()
def decoder_save_weights(self, save_dir, n_iter):
state_dict = {}
state_dict["decoder"] = self.decoder.state_dict()
torch.save(
state_dict,
os.path.join(
save_dir, f"decoder_weights_niter{n_iter}.pt"
),
)
@torch.no_grad()
def extract_feats(self, dims, type_feats="k"):
nb_im, nh, nb_tokens, _ = dims
qkv = (
self.hook_features["qkv"]
.reshape(
nb_im, nb_tokens, 3, nh, -1 // nh
) # 3 corresponding to |qkv|
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
if type_feats == "q":
return q.transpose(1, 2).float()
elif type_feats == "k":
return k.transpose(1, 2).float()
elif type_feats == "v":
return v.transpose(1, 2).float()
else:
raise ValueError("Unknown features")
def get_vit_encoder(vit_arch, vit_model, vit_patch_size, enc_type_feats):
if vit_arch == "vit_small" and vit_patch_size == 16:
url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
initial_dim = 384
elif vit_arch == "vit_small" and vit_patch_size == 8:
url = "dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth"
initial_dim = 384
elif vit_arch == "vit_base" and vit_patch_size == 16:
if vit_model == "clip":
url = "5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"
elif vit_model == "dino":
url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
initial_dim = 768
elif vit_arch == "vit_base" and vit_patch_size == 8:
url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
initial_dim = 768
if vit_model == "dino":
vit_encoder = vits.__dict__[vit_arch](patch_size=vit_patch_size, num_classes=0)
# TODO change if want to have last layer not unfrozen
for p in vit_encoder.parameters():
p.requires_grad = False
vit_encoder.eval().cuda() # mode eval
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/" + url
)
vit_encoder.load_state_dict(state_dict, strict=True)
hook_features = {}
if enc_type_feats in ["k", "q", "v", "qkv", "mlp"]:
# Define the hook
def hook_fn_forward_qkv(module, input, output):
hook_features["qkv"] = output
vit_encoder._modules["blocks"][-1]._modules["attn"]._modules[
"qkv"
].register_forward_hook(hook_fn_forward_qkv)
else:
raise ValueError("Not implemented.")
return vit_encoder, initial_dim, hook_features