forked from valeoai/FOUND
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_found_evaluate.py
89 lines (82 loc) · 3.22 KB
/
main_found_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from model import FoundModel
from misc import load_config
from datasets.datasets import build_dataset
from evaluation.saliency import evaluate_saliency
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description = 'Evaluation of FOUND',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--dataset-eval", type=str, choices=["ECSSD", "DUT-OMRON", "DUTS-TEST"], help="Name of evaluation dataset."
)
parser.add_argument(
"--dataset-set-eval", type=str, default=None, help="Set of the dataset."
)
parser.add_argument(
"--eval-type", type=str, choices=["saliency", "uod"], help="Evaluation type."
)
parser.add_argument(
"--apply-bilateral", action="store_true", help="use bilateral solver."
)
parser.add_argument(
"--evaluation-mode", type=str, default="multi", choices=["single", "multi"], help="Type of evaluation."
)
parser.add_argument(
"--model-weights", type=str, default="data/weights/decoder_weights.pt",
)
parser.add_argument(
"--config", type=str, default="configs/found_DUTS-TR.yaml",
)
args = parser.parse_args()
print(args.__dict__)
# Configuration
config = load_config(args.config)
# ------------------------------------
# Load the model
model = FoundModel(vit_model=config.model["pre_training"],
vit_arch=config.model["arch"],
vit_patch_size=config.model["patch_size"],
enc_type_feats=config.found["feats"],
bkg_type_feats=config.found["feats"],
bkg_th=config.found["bkg_th"])
# Load weights
model.decoder_load_weights(args.model_weights)
model.eval()
print(f"Model {args.model_weights} loaded correctly.")
# ------------------------------------
# Build the validation set
val_dataset = build_dataset(
root_dir="/datasets_local",
dataset_name=args.dataset_eval,
dataset_set=args.dataset_set_eval,
for_eval=True,
evaluation_type=args.eval_type,
)
print(f"\nBuilding dataset {val_dataset.name} (#{len(val_dataset)} images)")
# ------------------------------------
# Training
print(f"\nStarted evaluation on {val_dataset.name}")
if args.eval_type == "saliency":
evaluate_saliency(
val_dataset,
model=model,
evaluation_mode=args.evaluation_mode,
apply_bilateral=args.apply_bilateral,
)
else:
raise ValueError("Other evaluation method to come.")