-
Notifications
You must be signed in to change notification settings - Fork 0
/
type-set-a.lisp
858 lines (720 loc) · 37.4 KB
/
type-set-a.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
; ACL2 Version 6.4 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2014, Regents of the University of Texas
; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc. See the documentation topic NOTE-2-0.
; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; LICENSE for more details.
; Written by: Matt Kaufmann and J Strother Moore
; email: [email protected] and [email protected]
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.
(in-package "ACL2")
; The following macro defines the macro the-type-set so that
; (the-type-set x) expands to (the (integer 0 n) x). It also declares
; the symbols listed below as defconsts whose values are the
; successive powers of 2.
; Warning: The first six entries *ts-zero* through
; *ts-complex-rational* are tied down to bit positions 0-5. See, for
; example, our setting up of the +-alist entry. Note however that in
; fact, we are wiring in the first five entries as well, in our
; handling of *type-set-<-table*. Since < is a function defined only
; on the rationals, the latter decision seems safe even given the
; possibility that we'll add additional numeric types in the future.
; WARNING: If new basic type-sets are added, update the function
; one-bit-type-setp below which enumerates all of the basic type-sets
; and also update *initial-type-set-inverter-rules* which must contain
; a rule for every primitive bit!
;; RAG - I added *ts-positive-non-ratio*, *ts-negative-non-ratio*, and
;; *ts-complex-non-rational*.
(def-basic-type-sets
*ts-zero*
*ts-positive-integer*
*ts-positive-ratio*
#+:non-standard-analysis *ts-positive-non-ratio*
*ts-negative-integer*
*ts-negative-ratio*
#+:non-standard-analysis *ts-negative-non-ratio*
; It is tempting to split the complex rationals into the positive and negative
; complex rationals (i.e., those with positive real parts and those with
; negative real parts). See the ``Long comment on why we extend the
; true-type-alist to accommodate complex rationals'' in assume-true-false.
; For now, we'll resist that temptation.
*ts-complex-rational*
#+:non-standard-analysis *ts-complex-non-rational*
*ts-nil*
*ts-t*
*ts-non-t-non-nil-symbol*
*ts-proper-cons*
*ts-improper-cons*
*ts-string*
*ts-character*)
; Notes on the Implementation of Type-Sets
; Suppose, contrary to truth but convenient for thinking, that there
; were only 3 ``regular'' type bits, say for cons, symbol, and
; character. Then the length of the list on which def-basic-type-sets
; would be called would be 3. Thus the integer 2^3-1 = 7 = ...0000111
; would be the type set that represented the set of all conses,
; symbols, and characters. The type-set (lognot 7) = ....1111000 = -8
; would be the complement of that, i.e. the type set that consisted of
; everything but conses, symbols, and characters. Were there only 3
; regular type bits, 7 and -8 would be the maximum and minimum type
; sets, considered as integers,
; Since, in fact, we name 13 regular type bits above, and 2^13 = 8192,
; the type-sets range from -8192 to +8191.
; It is important to note that even though there are only 13 regular
; type bits, type-sets are not exactly 13 bits wide. A Common Lisp
; integer, when treated as a logical bit vector, can be thought of as
; a infinite series of bits which always concludes with an infinite
; series of 0's (for positive integers) or an infinite series of 1's
; (for negative integers). We think of the bits in these two infinite
; series as standing for the ``irregular'' (non-ACL2) Common Lisp
; types. Returning to the example above of 3 regular bits, and
; imagining that the irregular bits are for floats, arrays,
; pathnames, etc., then ...1111000 can be thought of as representing
; the set of all floats, complexes, arrays, pathnames, ..., etc.
; Since we there are an infinite number of these irregular bits the
; only way we can say this without the ``etc.'' is to say ``not
; conses, symbols, or characters.''
; When we first implemented ACL2 we did not use this approach.
; Instead we allocated one additional ``regular'' bit which we named
; *ts-other*, denoting all the ``irregular'' objects. We cannot
; reconstruct exactly why we did this, though we believe it had to do
; with the misapprehension that use of the so-called ``sign bit'' (as
; in nqthm) would limit type sets to fixnums. The fallacy of course
; is that in Common Lisp there is no sign bit, there is an infinite
; sequence of them. In any case, the introduction of *ts-other* had
; several bad effects on our thinking, although it did not cause
; unsoundness. The main effect was to lead us to pretend that
; type-sets could be thought of as masks of some fixed width, i.e.,
; 14. But then consider two bit vectors that agree on their low order
; 14 bits but differ on the high order bits. Are they the same type
; set or not? Since we compare the type-sets with equality, they
; clearly are not the same. What made our code correct was that such
; type sets could never arise: the setting of the *ts-other* bit was
; always equal to the setting of all the ``irregular'' bits. Of
; course, this invariant would have been violated had we ever created
; a type-set by logioring *ts-other* into another type-set, but we
; never did that. In any case, we now realize that the use of the
; infinite sequence of sign bits a la nqthm is really cleaner because
; it gives us no way to turn on the irregular bits except by
; complementing known bits.
(defconst *ts-non-negative-integer* (ts-union0 *ts-zero*
*ts-positive-integer*))
(defconst *ts-non-positive-integer* (ts-union0 *ts-zero*
*ts-negative-integer*))
(defconst *ts-integer* (ts-union0 *ts-positive-integer*
*ts-zero*
*ts-negative-integer*))
(defconst *ts-rational* (ts-union0 *ts-integer*
*ts-positive-ratio*
*ts-negative-ratio*))
;; RAG - I added the *ts-real* type, analogous to *ts-rational*.
#+:non-standard-analysis
(defconst *ts-real* (ts-union0 *ts-integer*
*ts-positive-ratio*
*ts-positive-non-ratio*
*ts-negative-ratio*
*ts-negative-non-ratio*))
;; RAG - I added *ts-complex* to include the complex-rationals and
;; non-rationals.
#+:non-standard-analysis
(defconst *ts-complex* (ts-union0 *ts-complex-rational*
*ts-complex-non-rational*))
;; RAG - I changed the type *ts-acl2-number* to include the new reals
;; and complex numbers as well as the old rational numbers. I added
;; the types *ts-rational-acl2-number* to stand for the old
;; *ts-acl2-number*, and I added *ts-non-rational-acl2-number* to
;; represent the new numbers.
(defconst *ts-acl2-number*
#+:non-standard-analysis
(ts-union0 *ts-real* *ts-complex*)
#-:non-standard-analysis
(ts-union0 *ts-rational* *ts-complex-rational*))
(defconst *ts-rational-acl2-number* (ts-union0 *ts-rational*
*ts-complex-rational*))
#+:non-standard-analysis
(defconst *ts-non-rational-acl2-number* (ts-union0 *ts-positive-non-ratio*
*ts-negative-non-ratio*
*ts-complex-non-rational*))
(defconst *ts-negative-rational* (ts-union0 *ts-negative-integer*
*ts-negative-ratio*))
(defconst *ts-positive-rational* (ts-union0 *ts-positive-integer*
*ts-positive-ratio*))
(defconst *ts-non-positive-rational* (ts-union0 *ts-zero*
*ts-negative-rational*))
(defconst *ts-non-negative-rational* (ts-union0 *ts-zero*
*ts-positive-rational*))
(defconst *ts-ratio* (ts-union0 *ts-positive-ratio*
*ts-negative-ratio*))
;; RAG - I added the types *ts-non-ratio*, *ts-negative-real*,
;; *ts-positive-real*, *ts-non-positive-real*, and
;; *ts-non-negative-real*, to mimic their *...-rational*
;; counterparts.
#+:non-standard-analysis
(progn
(defconst *ts-non-ratio* (ts-union0 *ts-positive-non-ratio*
*ts-negative-non-ratio*))
(defconst *ts-negative-real* (ts-union0 *ts-negative-integer*
*ts-negative-ratio*
*ts-negative-non-ratio*))
(defconst *ts-positive-real* (ts-union0 *ts-positive-integer*
*ts-positive-ratio*
*ts-positive-non-ratio*))
(defconst *ts-non-positive-real* (ts-union0 *ts-zero*
*ts-negative-real*))
(defconst *ts-non-negative-real* (ts-union0 *ts-zero*
*ts-positive-real*))
)
(defconst *ts-cons* (ts-union0 *ts-proper-cons*
*ts-improper-cons*))
(defconst *ts-boolean* (ts-union0 *ts-nil* *ts-t*))
(defconst *ts-true-list* (ts-union0 *ts-nil* *ts-proper-cons*))
(defconst *ts-non-nil* (ts-complement0 *ts-nil*))
(defconst *ts-symbol* (ts-union0 *ts-nil*
*ts-t*
*ts-non-t-non-nil-symbol*))
(defconst *ts-true-list-or-string* (ts-union0 *ts-true-list* *ts-string*))
(defconst *ts-empty* 0)
(defconst *ts-unknown* -1)
;; RAG - In accordance with the comment above on adding new basic type
;; sets, I added *ts-positive-non-ratio*, *ts-negative-non-ratio*, and
;; *ts-complex-non-rational* to this recognizer. I wonder if the
;; speed difference is still faster than logcount. Seems like if it
;; was 75 times faster before, it probably ought to be.
(defun one-bit-type-setp (ts)
; Tests in AKCL using one million iterations show that this function, as coded,
; is roughly 75 times faster than one based on logcount. We do not currently
; use this function but it was once used in the double whammy heuristics and
; because we spent some time finding the best way to code it, we've left it for
; now.
(or (= (the-type-set ts) *ts-zero*)
(= (the-type-set ts) *ts-positive-integer*)
(= (the-type-set ts) *ts-positive-ratio*)
#+:non-standard-analysis
(= (the-type-set ts) *ts-positive-non-ratio*)
(= (the-type-set ts) *ts-negative-integer*)
(= (the-type-set ts) *ts-negative-ratio*)
#+:non-standard-analysis
(= (the-type-set ts) *ts-negative-non-ratio*)
(= (the-type-set ts) *ts-complex-rational*)
#+:non-standard-analysis
(= (the-type-set ts) *ts-complex-non-rational*)
(= (the-type-set ts) *ts-nil*)
(= (the-type-set ts) *ts-t*)
(= (the-type-set ts) *ts-non-t-non-nil-symbol*)
(= (the-type-set ts) *ts-proper-cons*)
(= (the-type-set ts) *ts-improper-cons*)
(= (the-type-set ts) *ts-string*)
(= (the-type-set ts) *ts-character*)))
; The following fancier versions of the ts functions and macros will serve us
; well below and in type-set-b.lisp.
;; RAG - I added here the new type sets that I had defined:
;; *ts-rational-acl2-number*, *ts-non-rational-acl2-number*,
;; *ts-real*, *ts-non-positive-real*, *ts-non-negative-real*,
;; *ts-negative-real*, *ts-positive-real*, *ts-non-ratio*,
;; *ts-complex*, *ts-positive-non-ratio*, *ts-negative-non-ratio*, and
;; *ts-complex-non-rational*.
(defconst *code-type-set-alist*
; This alist serves two distinct purposes. The first is crucial to soundness:
; it maps each known type-set constant symbol to its value. (Unsoundness would
; be introduced by mapping such a symbol to an incorrect value.) Every
; declared type-set constant should be in this list; failure to include a
; symbol precludes its use in ts-union and other type-set building macros.
; Ordering of the alist is unimportant for these purposes.
; The second use is in decode-type-set, where we use it to convert a type-set
; into its symbolic form. For those purposes it is best if the larger
; type-sets, the one containing more 1 bits, are listed first. The heuristic
; for converting a type-set into symbolic form is to note whether the type-set
; contains as a subset one of the type-sets mentioned here and if so include
; the corresponding name in the output and delete from the numeric type-set the
; corresponding bits until all all bits are accounted for.
(list (cons '*ts-unknown* *ts-unknown*)
(cons '*ts-non-nil* *ts-non-nil*)
(cons '*ts-acl2-number* *ts-acl2-number*)
(cons '*ts-rational-acl2-number* *ts-rational-acl2-number*)
#+:non-standard-analysis
(cons '*ts-non-rational-acl2-number* *ts-non-rational-acl2-number*)
#+:non-standard-analysis
(cons '*ts-real* *ts-real*)
(cons '*ts-rational* *ts-rational*)
(cons '*ts-true-list-or-string* *ts-true-list-or-string*)
(cons '*ts-symbol* *ts-symbol*)
(cons '*ts-integer* *ts-integer*)
#+:non-standard-analysis
(cons '*ts-non-positive-real* *ts-non-positive-real*)
#+:non-standard-analysis
(cons '*ts-non-negative-real* *ts-non-negative-real*)
(cons '*ts-non-positive-rational* *ts-non-positive-rational*)
(cons '*ts-non-negative-rational* *ts-non-negative-rational*)
#+:non-standard-analysis
(cons '*ts-negative-real* *ts-negative-real*)
#+:non-standard-analysis
(cons '*ts-positive-real* *ts-positive-real*)
(cons '*ts-negative-rational* *ts-negative-rational*)
(cons '*ts-positive-rational* *ts-positive-rational*)
(cons '*ts-non-negative-integer* *ts-non-negative-integer*)
(cons '*ts-non-positive-integer* *ts-non-positive-integer*)
(cons '*ts-ratio* *ts-ratio*)
#+:non-standard-analysis
(cons '*ts-non-ratio* *ts-non-ratio*)
#+:non-standard-analysis
(cons '*ts-complex* *ts-complex*)
(cons '*ts-cons* *ts-cons*)
(cons '*ts-boolean* *ts-boolean*)
(cons '*ts-true-list* *ts-true-list*)
(cons '*ts-zero* *ts-zero*)
(cons '*ts-positive-integer* *ts-positive-integer*)
(cons '*ts-positive-ratio* *ts-positive-ratio*)
#+:non-standard-analysis
(cons '*ts-positive-non-ratio* *ts-positive-non-ratio*)
(cons '*ts-negative-integer* *ts-negative-integer*)
(cons '*ts-negative-ratio* *ts-negative-ratio*)
#+:non-standard-analysis
(cons '*ts-negative-non-ratio* *ts-negative-non-ratio*)
#+:non-standard-analysis
(cons '*ts-complex-non-rational* *ts-complex-non-rational*)
(cons '*ts-complex-rational* *ts-complex-rational*)
(cons '*ts-nil* *ts-nil*)
(cons '*ts-t* *ts-t*)
(cons '*ts-non-t-non-nil-symbol* *ts-non-t-non-nil-symbol*)
(cons '*ts-proper-cons* *ts-proper-cons*)
(cons '*ts-improper-cons* *ts-improper-cons*)
(cons '*ts-string* *ts-string*)
(cons '*ts-character* *ts-character*)
(cons '*ts-empty* *ts-empty*)))
(defun logior-lst (lst ans)
(cond
((null lst) ans)
(t (logior-lst (cdr lst)
(logior (car lst) ans)))))
(defun logand-lst (lst ans)
(cond
((null lst) ans)
(t (logand-lst (cdr lst)
(logand (car lst) ans)))))
(mutual-recursion
(defun ts-complement-fn (x)
(let ((y (eval-type-set x)))
(if (integerp y)
(lognot y)
(list 'lognot (list 'the-type-set y)))))
(defun ts-union-fn (x)
(cond ((null x) '*ts-empty*)
((null (cdr x)) (eval-type-set (car x)))
(t (let ((lst (eval-type-set-lst x)))
(cond
((integer-listp lst)
(logior-lst lst *ts-empty*))
(t
(xxxjoin 'logior lst)))))))
(defun ts-intersection-fn (x)
(cond ((null x) '*ts-unknown*)
((null (cdr x)) (eval-type-set (car x)))
(t (let ((lst (eval-type-set-lst x)))
(cond
((integer-listp lst)
(logand-lst lst *ts-unknown*))
(t
(xxxjoin 'logand lst)))))))
(defun eval-type-set (x)
(cond
((and (symbolp x)
(legal-constantp1 x))
(or (cdr (assoc-eq x *code-type-set-alist*))
(er hard 'eval-type-set
"The constant ~x0 appears as an argument to a ts- function but is ~
not known to *code-type-set-alist*, whose current value ~
is:~%~x1. You should redefine that constant or define your own ~
ts- functions if you want to avoid this problem."
x *code-type-set-alist*)))
((atom x) x)
(t (case (car x)
(quote (if (integerp (cadr x))
(cadr x)
x))
(ts-union (ts-union-fn (cdr x)))
(ts-intersection (ts-intersection-fn (cdr x)))
(ts-complement (ts-complement-fn (cadr x)))
(t x)))))
(defun eval-type-set-lst (x)
; This is an improved version of list-of-the-type-set.
(cond ((consp x)
(let ((y (eval-type-set (car x))))
(cons (if (integerp y)
y
(list 'the-type-set y))
(eval-type-set-lst (cdr x)))))
(t nil)))
)
(defmacro ts-complement (x)
(list 'the-type-set (ts-complement-fn x)))
(defmacro ts-intersection (&rest x)
(list 'the-type-set (ts-intersection-fn x)))
(defmacro ts-union (&rest x)
(list 'the-type-set (ts-union-fn x)))
(defmacro ts-subsetp (ts1 ts2)
(list 'let
(list (list 'ts1 ts1)
(list 'ts2 ts2))
; Warning: Keep the following type in sync with the definition of the-type-set
; in def-basic-type-sets.
`(declare (type (integer ,*min-type-set* ,*max-type-set*)
ts1 ts2))
'(ts= (ts-intersection ts1 ts2) ts1)))
;; RAG - I modified this to include cases for the irrationals and
;; complex numbers.
(defun type-set-binary-+-alist-entry (ts1 ts2)
(ts-builder ts1
(*ts-zero* ts2)
(*ts-positive-integer*
(ts-builder ts2
(*ts-zero* ts1)
(*ts-positive-integer* *ts-positive-integer*)
(*ts-negative-integer* *ts-integer*)
(*ts-positive-ratio* *ts-positive-ratio*)
(*ts-negative-ratio* *ts-ratio*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-positive-non-ratio*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-non-ratio*)
(*ts-complex-rational* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-complex-non-rational*)
))
(*ts-negative-integer*
(ts-builder ts2
(*ts-zero* ts1)
(*ts-positive-integer* *ts-integer*)
(*ts-negative-integer* *ts-negative-integer*)
(*ts-positive-ratio* *ts-ratio*)
(*ts-negative-ratio* *ts-negative-ratio*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-non-ratio*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-negative-non-ratio*)
(*ts-complex-rational* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-complex-non-rational*)
))
(*ts-positive-ratio*
(ts-builder ts2
(*ts-zero* ts1)
(*ts-positive-integer* *ts-positive-ratio*)
(*ts-negative-integer* *ts-ratio*)
(*ts-positive-ratio* *ts-positive-rational*)
(*ts-negative-ratio* *ts-rational*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-positive-non-ratio*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-non-ratio*)
(*ts-complex-rational* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-complex-non-rational*)
))
(*ts-negative-ratio*
(ts-builder ts2
(*ts-zero* ts1)
(*ts-positive-integer* *ts-ratio*)
(*ts-negative-integer* *ts-negative-ratio*)
(*ts-positive-ratio* *ts-rational*)
(*ts-negative-ratio* *ts-negative-rational*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-non-ratio*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-negative-non-ratio*)
(*ts-complex-rational* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-complex-non-rational*)
))
#+:non-standard-analysis
(*ts-positive-non-ratio*
(ts-builder ts2
(*ts-zero* ts1)
(*ts-positive-integer* *ts-positive-non-ratio*)
(*ts-negative-integer* *ts-non-ratio*)
(*ts-positive-ratio* *ts-positive-non-ratio*)
(*ts-negative-ratio* *ts-non-ratio*)
(*ts-positive-non-ratio* *ts-positive-real*)
(*ts-negative-non-ratio* *ts-real*)
(*ts-complex-rational* *ts-complex-non-rational*)
(*ts-complex-non-rational* *ts-complex*)))
#+:non-standard-analysis
(*ts-negative-non-ratio*
(ts-builder ts2
(*ts-zero* ts1)
(*ts-positive-integer* *ts-non-ratio*)
(*ts-negative-integer* *ts-negative-non-ratio*)
(*ts-positive-ratio* *ts-non-ratio*)
(*ts-negative-ratio* *ts-negative-non-ratio*)
(*ts-positive-non-ratio* *ts-real*)
(*ts-negative-non-ratio* *ts-negative-real*)
(*ts-complex-rational* *ts-complex-non-rational*)
(*ts-complex-non-rational* *ts-complex*)
))
(*ts-complex-rational*
(ts-builder ts2
(*ts-zero* ts1)
(*ts-positive-integer* *ts-complex-rational*)
(*ts-negative-integer* *ts-complex-rational*)
(*ts-positive-ratio* *ts-complex-rational*)
(*ts-negative-ratio* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-complex-non-rational*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-complex-non-rational*)
(*ts-complex-rational* *ts-rational-acl2-number*)
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-non-rational-acl2-number*)
))
#+:non-standard-analysis
(*ts-complex-non-rational*
(ts-builder ts2
(*ts-zero* ts1)
(*ts-positive-integer* *ts-complex-non-rational*)
(*ts-negative-integer* *ts-complex-non-rational*)
(*ts-positive-ratio* *ts-complex-non-rational*)
(*ts-negative-ratio* *ts-complex-non-rational*)
(*ts-positive-non-ratio* *ts-complex*)
(*ts-negative-non-ratio* *ts-complex*)
(*ts-complex-rational* *ts-non-rational-acl2-number*)
(*ts-complex-non-rational* *ts-acl2-number*)))))
(defun type-set-binary-+-alist1 (i j lst)
(cond ((< j 0) lst)
(t (let ((x (type-set-binary-+-alist-entry i j)))
(cond ((= x *ts-unknown*)
(type-set-binary-+-alist1 i (1- j) lst))
(t (type-set-binary-+-alist1 i (1- j)
(cons (cons (cons i j) x)
lst))))))))
(defun type-set-binary-+-alist (i j lst)
(cond ((< i 0) lst)
(t (type-set-binary-+-alist (1- i) j
(type-set-binary-+-alist1 i j lst)))))
;; RAG - I modified this to include cases for the irrationals and
;; complex numbers.
(defun type-set-binary-*-alist-entry (ts1 ts2)
(ts-builder ts1
(*ts-zero* *ts-zero*)
(*ts-positive-integer*
(ts-builder ts2
(*ts-zero* *ts-zero*)
(*ts-positive-integer* *ts-positive-integer*)
(*ts-negative-integer* *ts-negative-integer*)
(*ts-positive-ratio* *ts-positive-rational*)
(*ts-negative-ratio* *ts-negative-rational*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-positive-non-ratio*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-negative-non-ratio*)
(*ts-complex-rational* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-complex-non-rational*)
))
(*ts-negative-integer*
(ts-builder ts2
(*ts-zero* *ts-zero*)
(*ts-positive-integer* *ts-negative-integer*)
(*ts-negative-integer* *ts-positive-integer*)
(*ts-positive-ratio* *ts-negative-rational*)
(*ts-negative-ratio* *ts-positive-rational*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-negative-non-ratio*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-positive-non-ratio*)
(*ts-complex-rational* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-complex-non-rational*)
))
(*ts-positive-ratio*
(ts-builder ts2
(*ts-zero* *ts-zero*)
(*ts-positive-integer* *ts-positive-rational*)
(*ts-negative-integer* *ts-negative-rational*)
(*ts-positive-ratio* *ts-positive-rational*)
(*ts-negative-ratio* *ts-negative-rational*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-positive-non-ratio*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-negative-non-ratio*)
(*ts-complex-rational* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-complex-non-rational*)
))
(*ts-negative-ratio*
(ts-builder ts2
(*ts-zero* *ts-zero*)
(*ts-positive-integer* *ts-negative-rational*)
(*ts-negative-integer* *ts-positive-rational*)
(*ts-positive-ratio* *ts-negative-rational*)
(*ts-negative-ratio* *ts-positive-rational*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-negative-non-ratio*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-positive-non-ratio*)
(*ts-complex-rational* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-complex-non-rational*)
))
#+:non-standard-analysis
(*ts-positive-non-ratio*
(ts-builder ts2
(*ts-zero* *ts-zero*)
(*ts-positive-integer* *ts-positive-non-ratio*)
(*ts-negative-integer* *ts-negative-non-ratio*)
(*ts-positive-ratio* *ts-positive-non-ratio*)
(*ts-negative-ratio* *ts-negative-non-ratio*)
(*ts-positive-non-ratio* *ts-positive-real*)
(*ts-negative-non-ratio* *ts-negative-real*)
(*ts-complex-rational* *ts-complex-non-rational*)
(*ts-complex-non-rational* *ts-complex*)))
#+:non-standard-analysis
(*ts-negative-non-ratio*
(ts-builder ts2
(*ts-zero* *ts-zero*)
(*ts-positive-integer* *ts-negative-non-ratio*)
(*ts-negative-integer* *ts-positive-non-ratio*)
(*ts-positive-ratio* *ts-negative-non-ratio*)
(*ts-negative-ratio* *ts-positive-non-ratio*)
(*ts-positive-non-ratio* *ts-negative-real*)
(*ts-negative-non-ratio* *ts-positive-real*)
(*ts-complex-rational* *ts-complex-non-rational*)
(*ts-complex-non-rational* *ts-complex*)))
(*ts-complex-rational*
(ts-builder ts2
(*ts-zero* *ts-zero*)
(*ts-positive-integer* *ts-complex-rational*)
(*ts-negative-integer* *ts-complex-rational*)
(*ts-positive-ratio* *ts-complex-rational*)
(*ts-negative-ratio* *ts-complex-rational*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-complex-non-rational*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-complex-non-rational*)
(*ts-complex-rational*
(ts-intersection0 *ts-rational-acl2-number*
(ts-complement0 *ts-zero*)))
#+:non-standard-analysis
(*ts-complex-non-rational* *ts-non-rational-acl2-number*)))
#+:non-standard-analysis
(*ts-complex-non-rational*
(ts-builder ts2
(*ts-zero* *ts-zero*)
(*ts-positive-integer* *ts-complex-non-rational*)
(*ts-negative-integer* *ts-complex-non-rational*)
(*ts-positive-ratio* *ts-complex-non-rational*)
(*ts-negative-ratio* *ts-complex-non-rational*)
(*ts-positive-non-ratio* *ts-complex*)
(*ts-negative-non-ratio* *ts-complex*)
(*ts-complex-rational* *ts-non-rational-acl2-number*)
(*ts-complex-non-rational*
(ts-intersection0 *ts-acl2-number*
(ts-complement0 *ts-zero*)))))))
(defun type-set-binary-*-alist1 (i j lst)
(cond ((< j 0) lst)
(t (let ((x (type-set-binary-*-alist-entry i j)))
(cond ((= x *ts-unknown*)
(type-set-binary-*-alist1 i (1- j) lst))
(t (type-set-binary-*-alist1 i (1- j)
(cons (cons (cons i j)
x)
lst))))))))
(defun type-set-binary-*-alist (i j lst)
(cond ((< i 0) lst)
(t (type-set-binary-*-alist (1- i) j
(type-set-binary-*-alist1 i j lst)))))
;; RAG - I modified this to include cases for the irrationals and
;; complex numbers.
(defun type-set-<-alist-entry (ts1 ts2)
(ts-builder ts1
(*ts-zero*
(ts-builder ts2
(*ts-zero* *ts-nil*)
(*ts-positive-integer* *ts-t*)
(*ts-negative-integer* *ts-nil*)
(*ts-positive-ratio* *ts-t*)
(*ts-negative-ratio* *ts-nil*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-t*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-nil*)))
(*ts-positive-integer*
(ts-builder ts2
(*ts-zero* *ts-nil*)
(*ts-positive-integer* *ts-boolean*)
(*ts-negative-integer* *ts-nil*)
(*ts-positive-ratio* *ts-boolean*)
(*ts-negative-ratio* *ts-nil*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-boolean*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-nil*)))
(*ts-negative-integer*
(ts-builder ts2
(*ts-zero* *ts-t*)
(*ts-positive-integer* *ts-t*)
(*ts-negative-integer* *ts-boolean*)
(*ts-positive-ratio* *ts-t*)
(*ts-negative-ratio* *ts-boolean*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-t*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-boolean*)))
(*ts-positive-ratio*
(ts-builder ts2
(*ts-zero* *ts-nil*)
(*ts-positive-integer* *ts-boolean*)
(*ts-negative-integer* *ts-nil*)
(*ts-positive-ratio* *ts-boolean*)
(*ts-negative-ratio* *ts-nil*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-boolean*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-nil*)))
(*ts-negative-ratio*
(ts-builder ts2
(*ts-zero* *ts-t*)
(*ts-positive-integer* *ts-t*)
(*ts-negative-integer* *ts-boolean*)
(*ts-positive-ratio* *ts-t*)
(*ts-negative-ratio* *ts-boolean*)
#+:non-standard-analysis
(*ts-positive-non-ratio* *ts-t*)
#+:non-standard-analysis
(*ts-negative-non-ratio* *ts-boolean*)))
#+:non-standard-analysis
(*ts-positive-non-ratio*
(ts-builder ts2
(*ts-zero* *ts-nil*)
(*ts-positive-integer* *ts-boolean*)
(*ts-negative-integer* *ts-nil*)
(*ts-positive-ratio* *ts-boolean*)
(*ts-negative-ratio* *ts-nil*)
(*ts-positive-non-ratio* *ts-boolean*)
(*ts-negative-non-ratio* *ts-nil*)))
#+:non-standard-analysis
(*ts-negative-non-ratio*
(ts-builder ts2
(*ts-zero* *ts-t*)
(*ts-positive-integer* *ts-t*)
(*ts-negative-integer* *ts-boolean*)
(*ts-positive-ratio* *ts-t*)
(*ts-negative-ratio* *ts-boolean*)
(*ts-positive-non-ratio* *ts-t*)
(*ts-negative-non-ratio* *ts-boolean*)))))
(defun type-set-<-alist1 (i j lst)
(cond ((< j 0) lst)
(t (let ((x (type-set-<-alist-entry i j)))
(cond ((= x *ts-unknown*)
(type-set-<-alist1 i (1- j) lst))
(t (type-set-<-alist1 i (1- j)
(cons (cons (cons i j) x)
lst))))))))
(defun type-set-<-alist (i j lst)
(cond ((< i 0) lst)
(t (type-set-<-alist (1- i) j
(type-set-<-alist1 i j lst)))))