diff --git a/examples/32_plot_velocity_deficit_profiles.py b/examples/32_plot_velocity_deficit_profiles.py index 19bd68d96..83a6460b9 100644 --- a/examples/32_plot_velocity_deficit_profiles.py +++ b/examples/32_plot_velocity_deficit_profiles.py @@ -18,7 +18,7 @@ from floris.tools import FlorisInterface from floris.tools.visualization import VelocityProfilesFigure - +import floris.tools.visualization as wakeviz """ The first part of this example illustrates how to plot velocity deficit profiles at @@ -37,16 +37,18 @@ def get_profiles(direction, resolution=100): downstream_dists=downstream_dists, resolution=resolution, homogeneous_wind_speed=homogeneous_wind_speed, + wind_direction=wind_direction ) if __name__ == '__main__': D = 126.0 # Turbine diameter hub_height = 90.0 fi = FlorisInterface("inputs/gch.yaml") - fi.reinitialize(layout_x=[0.0], layout_y=[0.0]) + fi.reinitialize(layout_x=[0.0, 500, 1000], layout_y=[0.0, 0.0, 0.0]) downstream_dists = D * np.array([3, 5, 7]) homogeneous_wind_speed = 8.0 + wind_direction = 310 # Below, `get_profiles('y')` returns three velocity deficit profiles. These are sampled along # three corresponding lines that are all parallel to the y-axis (cross-stream direction). @@ -55,6 +57,13 @@ def get_profiles(direction, resolution=100): # same streamwise locations. profiles = get_profiles('y') + get_profiles('z') + plane = fi.calculate_horizontal_plane(height=90, wd=[wind_direction]) + ax = wakeviz.visualize_cut_plane(plane) + colors = ['r', 'g', 'b', 'c', 'm', 'y'] + for i, prof in enumerate(profiles): + ax.plot(prof['x'], prof['y'], colors[i], label=str(i)) + ax.legend() + # Initialize a VelocityProfilesFigure. The workflow is similar to a matplotlib Figure: # Initialize it, plot data, and then customize it further if needed. # The provided value of `layout` puts y-profiles on the top row of the figure and diff --git a/floris/simulation/floris.py b/floris/simulation/floris.py index feaaa7505..eaed48f81 100644 --- a/floris/simulation/floris.py +++ b/floris/simulation/floris.py @@ -429,6 +429,8 @@ def solve_for_velocity_deficit_profiles( for i in range(n_lines): df = pd.DataFrame( { + "x": x_rotated[i], + "y": y_rotated[i], "x/D": x_relative_start[i]/ref_rotor_diameter, "y/D": y_relative_start[i]/ref_rotor_diameter, "z/D": z_relative_start[i]/ref_rotor_diameter,