forked from dvlab-research/LongLoRA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_trainable_weights.py
51 lines (43 loc) · 1.74 KB
/
get_trainable_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Written by Yukang Chen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import argparse
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--checkpoint_path', type=str, default="/dataset/models/checkpoint-1000")
parser.add_argument('--trainable_params', type=str, default="embed,norm")
args = parser.parse_args()
return args
def main(args):
path = args.checkpoint_path
trainable_params = args.trainable_params.split(",")
weights_all = torch.load(os.path.join(path, "pytorch_model.bin"))
weights_trainable = {}
weights_lora = {}
for k in weights_all:
if "lora" in k:
k_new = k.replace("default.", "") if "default." in k else k
weights_lora[k_new] = weights_all[k]
else:
if any([n in k for n in trainable_params]):
weights_trainable[k[17:]] = weights_all[k]
adapter_model = os.path.join(path, "adapter_model.bin")
trainable_params = os.path.join(path, "trainable_params.bin")
if not os.path.isfile(adapter_model):
torch.save(weights_lora, adapter_model)
torch.save(weights_trainable, trainable_params)
if __name__ == "__main__":
args = parse_config()
main(args)