-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathREADME-africa.Rmd
143 lines (97 loc) · 4.96 KB
/
README-africa.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
dpi=200,
comment = "#>",
fig.path = "man/figures/README-africa-",
out.width = "100%"
)
```
# COVID19analytics
<!-- . -->
This package curate (downloads, clean, consolidate, smooth) [data from Johns Hokpins](https://github.com/CSSEGISandData/COVID-19/) for analysing international outbreak of COVID-19.
It includes several visualizations of the COVID-19 international outbreak.
Yanchang Zhao, COVID-19 Data Analysis with Tidyverse and Ggplot2 - China. RDataMining.com, 2020.
URL: http://www.rdatamining.com/docs/Coronavirus-data-analysis-china.pdf.
* COVID19DataProcessor generates curated series
* [visualizations](https://www.r-bloggers.com/coronavirus-data-analysis-with-r-tidyverse-and-ggplot2/) by [Yanchang Zhao](https://www.r-bloggers.com/author/yanchang-zhao/) are included in ReportGenerator R6 object
* More visualizations included int ReportGeneratorEnhanced R6 object
* Visualizations ReportGeneratorDataComparison compares all countries counting epidemy day 0 when confirmed cases > n (i.e. n = 100).
# Consideration
Data is still noisy because there are missing data from some regions in some days. We are working on in it.
# Package
<!-- badges: start -->
| Release | Usage | Development |
|:--------|:------|:------------|
| | [![minimal R version](https://img.shields.io/badge/R%3E%3D-3.4.0-blue.svg)](https://cran.r-project.org/) | [![Travis](https://travis-ci.org/rOpenStats/COVID19analytics.svg?branch=master)](https://travis-ci.org/rOpenStats/COVID19analytics) |
| [![CRAN](http://www.r-pkg.org/badges/version/COVID19analytics)](https://cran.r-project.org/package=COVID19analytics) | | [![codecov](https://codecov.io/gh/rOpenStats/COVID19analytics/branch/master/graph/badge.svg)](https://codecov.io/gh/rOpenStats/COVID19analytics) |
|||[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)|
<!-- badges: end -->
# How to get started (Development version)
Install the R package using the following commands on the R console:
```R
# install.packages("devtools")
devtools::install_github("rOpenStats/COVID19analytics", build_opts = NULL)
```
# How to use it
```{r load}
library(COVID19analytics)
library(dplyr)
```
```{r}
data.processor <- COVID19DataProcessor$new(provider = "JohnsHopkingsUniversity", missing.values = "imputation")
#dummy <- data.processor$preprocess() is setupData + transform is the preprocess made by data provider
dummy <- data.processor$setupData()
dummy <- data.processor$transform()
# Curate is the process made by missing values method
dummy <- data.processor$curate()
current.date <- max(data.processor$getData()$date)
rg <- ReportGeneratorEnhanced$new(data.processor)
rc <- ReportGeneratorDataComparison$new(data.processor = data.processor)
top.countries <- data.processor$top.countries
international.countries <- unique(c(data.processor$top.countries,
"China", "Japan", "Singapore", "Korea, South"))
africa.countries <- sort(data.processor$countries$getCountries(division = "continent", name = "Africa"))
```
```{r}
# Top 10 daily cases confirmed increment
(data.processor$getData() %>%
filter(date == current.date) %>%
select(country, date, rate.inc.daily, confirmed.inc, confirmed, deaths, deaths.inc) %>%
arrange(desc(confirmed.inc)) %>%
filter(confirmed >=10))[1:10,]
```
```{r}
# Top 10 daily deaths increment
(data.processor$getData() %>%
filter(date == current.date) %>%
select(country, date, rate.inc.daily, confirmed.inc, confirmed, deaths, deaths.inc) %>%
arrange(desc(deaths.inc)))[1:10,]
```
```{r, dataviz-4-africa-countries}
rg$ggplotTopCountriesStackedBarDailyInc(included.countries = africa.countries,
countries.text = "Africa")
rc$ggplotComparisonExponentialGrowth(included.countries = africa.countries, min.cases = 20)
rg$ggplotCountriesLines(included.countries = africa.countries, countries.text = "Africa countries",
field = "confirmed.inc", log.scale = TRUE)
rc$ggplotComparisonExponentialGrowth(included.countries = africa.countries,
field = "deaths", y.label = "deaths", min.cases = 1)
```
```{r, dataviz-5-top-countries}
rg$ggplotTopCountriesStackedBarDailyInc(top.countries)
rc$ggplotComparisonExponentialGrowth(included.countries = international.countries,
min.cases = 100)
```
```{r, dataviz-6-top-countries-inc-daily}
rg$ggplotCountriesLines(field = "confirmed.inc", log.scale = TRUE)
rg$ggplotCountriesLines(field = "rate.inc.daily", log.scale = TRUE)
```
```{r, dataviz-7-top-countries-inc-legacy}
rg$ggplotTopCountriesPie()
rg$ggplotTopCountriesBarPlots()
rg$ggplotCountriesBarGraphs(selected.country = "Ethiopia")
```