-
Notifications
You must be signed in to change notification settings - Fork 5
/
lecture_lab04.qmd
819 lines (585 loc) · 22 KB
/
lecture_lab04.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
---
title: "Lecture Lab 4"
author: "Leon Eyrich Jessen"
format:
revealjs:
embed-resources: true
theme: moon
slide-number: c/t
width: 1600
height: 900
mainfont: avenir
logo: images/r4bds_logo_small.png
footer: "R for Bio Data Science"
---
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Recall this chunk - What is "it"?
```{r}
#| echo: false
#| eval: true
#| message: false
library("tidyverse")
```
```{r}
#| echo: true
load(file = "data/gravier.RData")
set.seed(676571)
cancer_data=mutate(as_tibble(pluck(gravier,"x")),y=pluck(gravier,"y"),pt_id=1:length(pluck(gravier, "y")),age=round(rnorm(length(pluck(gravier,"y")),mean=55,sd=10),1))
cancer_data=rename(cancer_data,event_label=y)
cancer_data$age_group=cut(cancer_data$age,breaks=seq(10,100,by=10))
cancer_data=relocate(cancer_data,c(pt_id,age,age_group,pt_id,event_label))
cancer_data
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## In Plenum
- Take 2 minutes to discuss with the person next to you:
- _"What does this code actually do?"_
```{r}
#| echo: true
#| eval: false
load(file = "data/gravier.RData")
set.seed(676571)
cancer_data=mutate(as_tibble(pluck(gravier,"x")),y=pluck(gravier,"y"),pt_id=1:length(pluck(gravier, "y")),
age=round(rnorm(length(pluck(gravier,"y")),mean=55,sd=10),1))
cancer_data=rename(cancer_data,event_label=y)
cancer_data$age_group=cut(cancer_data$age,breaks=seq(10,100,by=10))
cancer_data=relocate(cancer_data,c(pt_id,age,age_group,pt_id,event_label))
```
*Like... Try to decipher what is going on...*
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## So what is it? Basically unreadable is what it is!
:::: {.columns}
::: {.column width="50%"}
- So `dplyr` to the rescue
- Let us fix this code using `dplyr` verbs, so that we (and others) may read what is actually going on
:::
::: {.column width="50%"}
![](images/unreadable_code_meme.png){width=80% fig-align="center"}
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## But first
:::: {.columns}
::: {.column width="50%"}
The 6 basic verbs you prepared for today:
1. `filter()`
1. `arrange()`
1. `select()`
1. `mutate()`
1. `summarise()`
1. `group_by()`
...and then there is:
- `count()`
- `View()`
- `|>`
:::
::: {.column width="50%"}
### Self-check
- Based on what you prepared for today, check yourself:
- *Take 2 min. and see if you can remember what each of these verbs do?*
- *Explain it to the person next to you*
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The 6 basic verbs and then some...
1. `filter()` $\rightarrow$ subsets rows based on logical tests
1. `arrange()`
1. `select()`
1. `mutate()`
1. `summarise()`
1. `group_by()`
...and then there is:
- `count()`
- `View()`
- `|>`
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The 6 basic verbs and then some...
1. `filter()`
1. `arrange()` $\rightarrow$ sorts the data based on one or more variables
1. `select()`
1. `mutate()`
1. `summarise()`
1. `group_by()`
...and then there is:
- `count()`
- `View()`
- `|>`
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The 6 basic verbs and then some...
1. `filter()`
1. `arrange()`
1. `select()` $\rightarrow$ subsets the variables
1. `mutate()`
1. `summarise()`
1. `group_by()`
...and then there is:
- `count()`
- `View()`
- `|>`
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The 6 basic verbs and then some...
1. `filter()`
1. `arrange()`
1. `select()`
1. `mutate()` $\rightarrow$ creates new variables
1. `summarise()`
1. `group_by()`
...and then there is:
- `count()`
- `View()`
- `|>`
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The 6 basic verbs and then some...
1. `filter()`
1. `arrange()`
1. `select()`
1. `mutate()`
1. `summarise()` $\rightarrow$ does exactly that, summarises the data
1. `group_by()`
...and then there is:
- `count()`
- `View()`
- `|>`
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The 6 basic verbs and then some...
1. `filter()`
1. `arrange()`
1. `select()`
1. `mutate()`
1. `summarise()`
1. `group_by()` $\rightarrow$ adds group attributes to the data, so no looping! (Like... EVER!)
...and then there is:
- `count()`
- `View()`
- `|>`
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The 6 basic verbs and then some...
1. `filter()`
1. `arrange()`
1. `select()`
1. `mutate()`
1. `summarise()`
1. `group_by()`
...and then there is:
- `count()` $\rightarrow$ Again, does exactly that, counts i.e. number of elements in a group
- `View()`
- `|>`
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The 6 basic verbs and then some...
1. `filter()`
1. `arrange()`
1. `select()`
1. `mutate()`
1. `summarise()`
1. `group_by()`
...and then there is:
- `count()`
- `View()` $\rightarrow$ yields a handy "excel-like" (over)view of the data
- `|>`
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The 6 basic verbs and then some...
1. `filter()`
1. `arrange()`
1. `select()`
1. `mutate()`
1. `summarise()`
1. `group_by()`
...and then there is:
- `count()`
- `View()`
- `|>` $\rightarrow$ eq. to `|` in *nix systems, more on this later...
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## *"I kinda wanna start with the caveat"*
:::: {.columns}
::: {.column width="50%"}
- *"The bad news is, whenever you're learning a new tool, for a long time, you're going to suck! It's gonna be very frustrating! But the good news is that that is typical and something that happens to everyone and it's only temporary! Unfortunately, there is no way to going from knowing nothing about the subject to knowing something about a subject and being an expert in it without going through a period of great frustration and much suckiness! Keep pushing through!"* - H. Wickham [(dplyr tutorial at useR 2014, 4:10 - 4:48)](https://www.youtube.com/watch?v=8SGif63VW6E)
:::
::: {.column width="50%"}
![](images/hows_your_semester_going_meme.png){width=90% fig-align="center"}
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## *"I kinda wanna start with the caveat"*
:::: {.columns}
::: {.column width="50%"}
- Expect to be frustrated, it's a prerequisite for learning!
- Learn the difference between **constructive** and **destructive** frustration!
:::
::: {.column width="50%"}
![](images/how_its_going_meme.png){width=100% fig-align="center"}
:::
::::
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The pipe
Completely utterly central to create human readable code! Consider:
```{r}
#| echo: true
#| eval: false
replicate(n = 10, expr = paste0(sample(c("a", "c", "g", "t"), size = 100, replace = TRUE), collapse = ""))
```
Define the nucleotides
```{r}
#| echo: true
#| eval: false
c("a", "c", "g", "t")
```
Sample the nucleotides 100 times with replacement
```{r}
#| echo: true
#| eval: false
sample(c("a", "c", "g", "t"), size = 100, replace = TRUE)
```
Collapse the sample of characters into a string
```{r}
#| echo: true
#| eval: false
paste0(sample(c("a", "c", "g", "t"), size = 100, replace = TRUE), collapse = "")
```
Replicate the process 10 times
```{r}
#| echo: true
#| eval: true
replicate(n = 10, expr = paste0(sample(c("a", "c", "g", "t"), size = 100, replace = TRUE), collapse = ""))
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Now, the same thing, but using a pipe
```{r}
#| echo: true
#| eval: true
c("a", "c", "g", "t") |>
sample(size = 100, replace = TRUE) |>
paste0(collapse = "") |>
replicate(n = 10, expr = _)
```
We read the pipe `|>` as `then`, so:
1. Define the nucleotides, `then`
1. Sample the nucleotides 100 times with replacement, `then`
1. Collapse the sample of characters into a string, `then`
1. Replicate the process 10 times
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Same result, but which is more legible?
### Before, no piping:
```{r}
#| echo: true
#| eval: false
replicate(n = 10, expr = paste0(sample(c("a", "c", "g", "t"), size = 100, replace = TRUE), collapse = ""))
```
### After, with piping:
```{r}
#| echo: true
#| eval: false
c("a", "c", "g", "t") |>
sample(size = 100, replace = TRUE) |>
paste0(collapse = "") |>
replicate(n = 10, expr = _)
```
*Important: Note how the code literally becomes the comments! We strive for literate programming!*
*Also, note how we are here are solving the task using functional programming, i.e. no loops!*
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Rehash: Functional vs. imperative programming
:::: {.columns}
::: {.column width="50%"}
Functional Programming 👍
```{r}
#| echo: true
#| eval: false
c("a", "c", "g", "t") |>
sample(size = 100, replace = TRUE) |>
paste0(collapse = "") |>
replicate(n = 10, expr = _)
```
:::
::: {.column width="50%"}
Imperative Programming 👎
```{r}
#| echo: true
#| eval: false
my_nucleotides = c("a", "c", "g", "t")
n = 100
k = 10
my_dna_vec = c()
for( i in 1:k ){
my_dna = ""
for( j in 1:n ){
ran_int = sample(1:length(my_nucleotides), size = 1)
my_base = my_nucleotides[ran_int]
my_dna = paste0(my_dna, my_base)
}
my_dna_vec[i] = my_dna
}
```
:::
::::
**So, if you find your self thinking in terms of loops...**
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## STOP! In this course, we don't loop, we func!
![](images/nedry.gif){width=100px fig-align="center"}
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## The idea is to approach natural language
- *"Programs must be written for people to read, and only incidentally for machines to execute"* - Harold Abelson
- *In Tidyverse, the code becomes the comments!*
## Let us fix the `gravier`-data generation
Load the data
```{r}
#| echo: true
#| eval: true
load(file = "data/gravier.RData")
```
This gives us the `gravier` data. Let's see the structure
```{r}
#| echo: true
#| eval: true
str(gravier)
```
*The `str()`-function is really nice to understand the content of an object*
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Code fixing
Take the `gravier` data
```{r}
#| echo: true
#| eval: true
gravier
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Code fixing
Take the `gravier` data, `then` `pluck` out the `x` matrix
```{r}
#| echo: true
#| eval: true
gravier |>
pluck("x")
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Code fixing
Take the `gravier` data, `then` `pluck` out the `x` matrix, `then` convert to a `tibble`
```{r}
#| echo: true
#| eval: true
gravier |>
pluck("x") |>
as_tibble()
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Code fixing
Take the `gravier` data, `then` `pluck` out the `x` matrix, `then` convert to a `tibble`, `then` add the `y` response variable
```{r}
#| echo: true
#| eval: true
gravier |>
pluck("x") |>
as_tibble() |>
mutate(y = pluck(gravier, "y"))
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Code fixing
Take the `gravier` data, `then` `pluck` out the `x` matrix, `then` convert to a `tibble`, `then` add the `y` response variable and a `pt_id` variable
```{r}
#| echo: true
#| eval: true
gravier |>
pluck("x") |>
as_tibble() |>
mutate(y = pluck(gravier, "y"),
pt_id = row_number())
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Code fixing
```{r}
#| echo: false
#| eval: true
set.seed(676571)
```
Take the `gravier` data, `then` `pluck` out the `x` matrix, `then` convert to a `tibble`, `then` add the `y` response variable and a `pt_id` variable and an normal distributed $age \sim \mathcal{N}(\mu = 55,\,\sigma^{2} = 10)\,.$ variable (Note: $\LaTeX$ eqn in Quarto!)
```{r}
#| echo: true
#| eval: true
gravier |>
pluck("x") |>
as_tibble() |>
mutate(y = pluck(gravier, "y"),
pt_id = row_number(),
age = round(rnorm(n = n(), mean = 55, sd = 10), digits = 1))
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Code fixing
```{r}
#| echo: false
#| eval: true
set.seed(676571)
```
Take the `gravier` data, `then` `pluck` out the `x` matrix, `then` convert to a `tibble`, `then` add the `y` response variable and a `pt_id` variable and an normal distributed $age \sim \mathcal{N}(\mu = 55,\,\sigma^{2} = 10)\,.$ variable, `then` create `age_group`
```{r}
#| echo: true
#| eval: true
gravier |>
pluck("x") |>
as_tibble() |>
mutate(y = pluck(gravier, "y"),
pt_id = row_number(),
age = round(rnorm(n = n(), mean = 55, sd = 10), digits = 1),
age_group = cut(age, breaks = seq(10, 100, by = 10)))
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Code fixing
```{r}
#| echo: false
#| eval: true
set.seed(676571)
```
Take the `gravier` data, `then` `pluck` out the `x` matrix, `then` convert to a `tibble`, `then` add the `y` response variable and a `pt_id` variable and an normal distributed $age \sim \mathcal{N}(\mu = 55,\,\sigma^{2} = 10)\,.$ variable, `then` create `age_group`, `then` `rename` the `y` response to `event_label`
```{r}
#| echo: true
#| eval: true
gravier |>
pluck("x") |>
as_tibble() |>
mutate(y = pluck(gravier, "y"),
pt_id = row_number(),
age = round(rnorm(n = n(), mean = 55, sd = 10), digits = 1),
age_group = cut(age, breaks = seq(10, 100, by = 10))) |>
rename(event_label = y)
```
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Code fixing - Compare
```{r}
#| echo: false
#| eval: true
load(file = "data/gravier.Rdata")
set.seed(676571)
```
### Before
```{r}
#| echo: true
#| eval: true
cancer_data=mutate(as_tibble(pluck(gravier,"x")),y=pluck(gravier,"y"),
pt_id=1:length(pluck(gravier, "y")),age=round(rnorm(length(pluck(gravier,"y")),
mean=55,sd=10),1))
cancer_data=rename(cancer_data,event_label=y)
cancer_data$age_group=cut(cancer_data$age,breaks=seq(10,100,by=10))
```
### After
```{r}
#| echo: true
#| eval: true
cancer_data <- gravier |>
pluck("x") |>
as_tibble() |>
mutate(y = pluck(gravier, "y"), # eqv. gravier |> pluck("y")
pt_id = row_number(),
age = round(rnorm(n = n(), mean = 55, sd = 10), digits = 1),
age_group = cut(age, breaks = seq(10, 100, by = 10))) |>
rename(event_label = y)
```
- Literate programming: Verbose, but virtually self-explanatory
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## A `dplyr` pipeline, created we have - Lets `style` it!
:::: {.columns}
::: {.column width="50%"}
```{r}
#| echo: true
#| eval: true
cancer_data <- gravier |>
pluck("x") |>
as_tibble() |>
mutate(y = pluck(gravier, "y"),
pt_id = row_number(),
age = round(rnorm(n = n(),
mean = 55,
sd = 10),
digits = 1),
age_group = cut(age,
breaks = seq(from = 10,
to = 100,
by = 10))) |>
rename(event_label = y)
```
:::
::: {.column width="50%"}
- Commas and spaces like in natural language
- State function parameters
- One line per pipe, increases readability
- Create one variable per line
- Focus on code readability, not minimising verbosity
- Using pipe in variable creation is a taste matter, convoluting 1-2 functions is ok
:::
::::
**Good coding style is like correct punctuation: you can manage without it, butitsuremakesthingseasiertoread!**
*Psstt... Get used to it, we will point out non-styled code from now!*
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Briefly on tidy data
There are three interrelated rules which make a dataset tidy:
1. Each variable must have its own column
1. Each observation must have its own row
1. Each value must have its own cell
![](images/tidy_data_illustration.png){fig-align="center"}
- Spend your time on getting the data into this format and _then_ the entire plethora of `tidyverse`-tools is your oyster!
<!--# ---------------------------------------------------------------------- -->
<!--# SLIDE ---------------------------------------------------------------- -->
<!--# ---------------------------------------------------------------------- -->
## Your turn! Proceed to the exercises!
![](images/group_work_meme.png){fig-align="center"}
*Psstt... Everything you need to solve the exercises are in these slides and/or the preparation materials!*