Skip to content
Rongxin Fang edited this page Mar 31, 2019 · 39 revisions

Table of Contents

What is a snap file?

snap (Single-Nucleus Accessibility Profiles) file is a hierarchically structured hdf5 file that is specially designed for storing single nucleus ATAC-seq datasets. A snap file (version 4) contains the following sessions: header (HD), cell-by-bin accessibility matrix (AM), cell-by-peak matrix (PM), cell-by-gene matrix (GM), barcode (BD) and fragment (FM).

  • HD session contains snap-file version, created date, alignment and reference genome information.
  • BD session contains all unique barcodes and corresponding meta data.
  • AM session contains cell-by-bin matrices of different resolutions (or bin sizes).
  • PM session contains cell-by-peak count matrix. PM session contains cell-by-gene count matrix.
  • FM session contains all usable fragments for each cell. Fragments are indexed for fast search. Detailed information about snap file can be found here.

How to create CEMBA180306_2B.snap?

Step 1. Barcode demultiplexing.
We first de-multicomplex FASTQ file by adding the barcode to the beginning of each read in the following format: "@" + "barcode" + ":" + "read_name". Below is one example of demultiplexed fastq file. Because barcode design can be very different between experiments and platforms, we decide not to include this part in the current analysis pipline. However, this can be easily implemented by awk or python script. Here download demo dataset from MOs. (How to run snaptools on 10X dataset?)

$ wget http://renlab.sdsc.edu/r3fang/share/Fang_2019/MOs_snATAC/fastq/CEMBA180306_2B.demultiplexed.R1.fastq.gz
$ wget http://renlab.sdsc.edu/r3fang/share/Fang_2019/MOs_snATAC/fastq/CEMBA180306_2B.demultiplexed.R2.fastq.gz
$ wget http://renlab.sdsc.edu/r3fang/share/Fang_2019/MOs_snATAC/peaks/all_peak.bed
$ wget http://renlab.sdsc.edu/r3fang/share/Fang_2019/MOs_snATAC/mm10.blacklist.bed.gz
$ wget http://renlab.sdsc.edu/r3fang/share/Fang_2019/MOs_snATAC/genes/gencode.vM16.gene.bed
$ wget http://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/mm10.chrom.sizes
$ wget http://renlab.sdsc.edu/r3fang/share/Fang_2019/MOs_snATAC/genome/mm10.fa
$ 
$ zcat CEMBA180306_2B.demultiplexed.R1.fastq.gz | head 
@AGACGGAGACGAATCTAGGCTGGTTGCCTTAC:7001113:920:HJ55CBCX2:1:1108:1121:1892 1:N:0:0
ATCCTGGCATGAAAGGATTTTTTTTTTAGAAAATGAAATATATTTTAAAG
+
DDDDDIIIIHIIGHHHIIIHIIIIIIHHIIIIIIIIIIIIIIIIIIIIII

Step 2. Index reference genome (snaptools).
Index the reference genome before alignment (see FAQs how to start from alignment file). Here we show how to index the genome using BWA. User can switch to other aligner by --aligner tag, currently snaptools supports bwa, bowtie2 and minimap2. User also needs to specify the folder that stores the aligner executable binary file. For instance, if bwa is installed under /opt/biotools/bwa/bin/bwa, set --path-to-aligner=/opt/biotools/bwa/bin/.

$ which bwa
/opt/biotools/bwa/bin/bwa 
$ snaptools index-genome  \
	--input-fasta=mm10.fa  \
	--output-prefix=mm10  \
	--aligner=bwa  \
	--path-to-aligner=/opt/biotools/bwa/bin/  \
	--num-threads=5

Step 3. Alignment (snaptools).
We next align de-multicomplexed reads to the corresponding reference genome using snaptools with following command. After alignment, reads are automatically sorted by read names (--if-sort). User can set mutiple CPUs to speed up this step by setting (--num-threads).

$ snaptools align-paired-end  \
	--input-reference=mm10.fa  \
	--input-fastq1=CEMBA180306_2B.demultiplexed.R1.fastq.gz  \
	--input-fastq2=CEMBA180306_2B.demultiplexed.R2.fastq.gz  \
	--output-bam=CEMBA180306_2B.bam  \
	--aligner=bwa  \
	--path-to-aligner=/opt/biotools/bwa/bin/  \
	--read-fastq-command=zcat  \
	--min-cov=0  \
	--num-threads=5  \
	--if-sort=True  \
	--tmp-folder=./  \
	--overwrite=TRUE                     

Step 4. Pre-processing (snaptools).
After alignment, we convert pair-end reads into fragments and for each fragment we check the following attributes: 1) mapping quality score MAPQ; 2) whether two ends are appropriately paired according to the alignment flag; 3) fragment length. We only keep those fragments that are 1) properly paired; 2) whose MAPQ is greater than 30 (--min-mapq); 3) with fragment length less than 1000bp (--max-flen). Because the reads have been sorted based on the barcodes (integrated into read names), fragments belonging to the same barcode are naturally grouped together which allows for removing PCR duplicates separately. After alignment and filtration, we generated a snap-format (Single-Nucleus Accessibility Profiles) file that contains meta data, cell-by-bin count matrices, cell-by-peak count matrix. Detailed information about snap file can be found in here. In the below example, barcodes of fragments less than 100 --min-cov=100 are filtered in order to speed up the process and save memory.

$ snaptools snap-pre  \
	--input-file=CEMBA180306_2B.bam  \
	--output-snap=CEMBA180306_2B.snap  \
	--genome-name=mm10  \
	--genome-size=mm10.chrom.sizes  \
	--min-mapq=30  \
	--min-flen=0  \
	--max-flen=1000  \
	--keep-chrm=TRUE  \
	--keep-single=TRUE  \
	--keep-secondary=False  \
	--overwrite=True  \
	--min-cov=100  \
	--verbose=True

Step 5. Cell-by-bin matrix (snaptools).
Using snap file, we next create the cell-by-bin matrix. Snap file allows for storing cell-by-bin matrices of different resolutions. In the below example, three cell-by-bin matrices are created with bin size of 1,000, 5,000 and 10,000. Note that this does not create a new file, all the matrices are stored in CEMBA180306_2B.snap.

$ snaptools snap-add-bmat	\
	--snap-file=CEMBA180306_2B.snap	\
	--bin-size-list 1000 5000 10000	\
	--verbose=True

Step 6. Cell-by-gene matrix (snaptools).
We next create the cell-by-gene count matrix which is later used for cluster annotation.

$ snaptools snap-add-gmat	\
	--snap-file=CEMBA180306_2B.snap	\
	--gene-file=gencode.vM16.gene.bed	\
	--verbose=True

How to create snap file from 10X dataset?

Case 1 case1

First run cellranger-atac mkfastq to generate the following demultiplexed fastq files:

Second, for each library recognize that R1 and R3 are the sequencing reads, and I1 is 16bp i5 (10x Barcode), and R2 is i7 (sample index).

Third, snaptools provide a module dex-fastq to integrate the 10X barcode into the read name.

$ snaptools dex-fastq \
    --input-fastq=Library1_1_L001_R1_001.fastq.gz \
    --output-fastq=Library1_1_L001_R1_001.dex.fastq.gz \ 
    --index-fastq-list Library1_1_L001_I1_001.fastq.gz

$ snaptools dex-fastq \
    --input-fastq=Library1_1_L001_R3_001.fastq.gz \
    --output-fastq=Library1_1_L001_R3_001.dex.fastq.gz \ 
    --index-fastq-list Library1_1_L001_I1_001.fastq.gz

$ snaptools dex-fastq \
    --input-fastq=Library1_2_L001_R1_001.fastq.gz \
    --output-fastq=Library1_2_L001_R1_001.dex.fastq.gz \ 
    --index-fastq-list Library1_2_L001_I1_001.fastq.gz

$ snaptools dex-fastq \
    --input-fastq=Library1_2_L001_R3_001.fastq.gz \
    --output-fastq=Library1_2_L001_R3_001.dex.fastq.gz \ 
    --index-fastq-list Library1_2_L001_I1_001.fastq.gz

# combine these two library
$ cat Library1_1_L001_R1_001.fastq.gz Library1_2_L001_R1_001.fastq.gz > Library1_L001_R1_001.fastq.gz
$ cat Library1_1_L001_R3_001.fastq.gz Library1_2_L001_R3_001.fastq.gz > Library1_L001_R3_001.fastq.gz

Four, run the rest of the pipeline using Library1_L001_R1_001.fastq.dex.gz and Library1_L001_R3_001.fastq.dex.gz.

Case 2 case2

In this example, we have two 10x libraries (each processed through a separate Chromium chip channel) that are multiplexed on a single flow-cell. Note that after running cellranger-atac mkfastq, we run a separate instance of the pipeline on each library as shown in above figure.

Next, for each library integrate the barcode into the read name separately:

$ snaptools dex-fastq \
    --input-fastq=Library1_S1_L001_R1_001.fastq.gz \
    --output-fastq=Library1_S1_L001_R1_001.dex.fastq.gz \ 
    --index-fastq-list Library1_S1_L001_I1_001.fastq.gz

$ snaptools dex-fastq \
    --input-fastq=Library1_S1_L001_R3_001.fastq.gz \
    --output-fastq=Library1_S1_L001_R3_001.dex.fastq.gz \ 
    --index-fastq-list Library1_S1_L001_I1_001.fastq.gz

Four, run the rest of the pipeline using Library1_S1_L001_R1_001.fastq.dex.gz and Library1_S1_L001_R3_001.fastq.dex.gz.

How to install snaptools step by step?

There are two ways of installing SnapTools now, snaptools will be available on Anaconda very soon.

  1. Install from PyPi
$ pip install snaptools==1.2.5
  1. Install from source
$ git clone https://github.com/r3fang/snaptools.git
$ cd snaptools
$ pip install -e . --user
$ ./bin/snaptools

However, you may find the installation failed on MAC OS system because neither of the methods successfully installed dependency pysam and pybedtools. This seems to be a general problem for these two packages on MAC OS. To solve this issue, we recommend to pre-install these two packages and the best way off course is through anaconda

$ conda install -c bioconda pysam 
$ conda install -c bioconda pybedtools 
$ pip install snaptools==1.2.5

How to create a snap file from bam or bed file?

In many cases, you probably already have indexed the reference genome and finished the alignments. In this case, you can skip the first two steps and directly jump to snaptools pre which takes name-sorted bam or bed file as input. Highly recommend to use unfiltered alignment file as input.

For bam file, the cell barcodes need to be integrated into the read name as below:

$ samtools view demo.bam

AAACTACCAGAAAGACGCAGTT:7001113:968:HMYT2BCX2:1:1215:20520:88475	77	*	0	0	*	*	0	0CTATGAGCACCGTCTCCGCCTCAGATGTGTATAAGAGACAGCAGAGTAAC	@DDBAI??E?1/<DCGECEHEHHGG1@GEHIIIHGGDGE@HIHEEIIHH1	AS:i:0	XS:i:0
AAACTACCAGAAAGACGCAGTT:7001113:968:HMYT2BCX2:1:1215:20520:88475	141	*	0	0	*	*	0	0GGCTTGTACAGAGCAAGTGCTGAAGTCCCTTTCTGATGACGTTCAACAGC	0<000/<<1<D1CC111<<1<1<111<111<<CDCF1<1<DHH<<<<C11	AS:i:0	XS:i:0
AAACTACCAGAAAGACGCAGTT:7001113:968:HMYT2BCX2:1:2201:20009:41468	77	*	0	0	*	*	0	0CGGTGCCCCTGTCCTGTTCGTGCCCACCGTCTCCGCCTCAGATGTGTATA	DDD@D/D<DHIHEHCCF1<<CCCGH?GHI1C1DHIII0<1D1<111<1<1	AS:i:0	XS:i:0
AAACTACCAGAAAGACGCAGTT:7001113:968:HMYT2BCX2:1:2201:20009:41468	141	*	0	0	*	*	0	0GAGCGAGGGCGGCAGAGGCAGGGGGAGGAGACCCGGTGGCCCGGCAGGCT	0<00</<//<//<//111000/<</</<0<1<1<//<<0<DCC/<///<D	AS:i:0	XS:i:0

$ snaptools snap-pre  \
	--input-file=demo.bam  \
	--output-snap=demo.snap  \
	--genome-name=mm10  \
	--genome-size=mm10.chrom.sizes  \
	--min-mapq=30  \
	--min-flen=0  \
	--max-flen=1000  \
	--keep-chrm=TRUE  \
	--keep-single=TRUE  \
	--keep-secondary=False  \
	--overwrite=True  \
	--min-cov=100  \
	--verbose=True

for bed file, the barcode should be the 4th column:

$ zcat demo.bed.gz | head

chr2	74358918	74358981	AACGAGAGCTAAAGACGCAGTT
chr6	134212048	134212100	AACGAGAGCTAAAGACGCAGTT
chr10	93276785	93276892	AACGAGAGCTAAAGACGCAGTT
chr2	128601366	128601634	AACGAGAGCTAAAGCGCATGCT
chr16	62129428	62129661	AACGAGAGCTAACAACCTTCTG
chr8	84946184	84946369	AACGAGAGCTAACAACCTTCTG

$ snaptools snap-pre  \
	--input-file=demo.bed.gz  \
	--output-snap=demo.snap  \
	--genome-name=mm10  \
	--genome-size=mm10.chrom.sizes  \
	--min-mapq=30  \
	--min-flen=0  \
	--max-flen=1000  \
	--keep-chrm=TRUE  \
	--keep-single=TRUE  \
	--keep-secondary=False  \
	--overwrite=True  \
	--min-cov=100  \
	--verbose=True
Clone this wiki locally