-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvert.py
106 lines (80 loc) · 4.11 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import numpy as np
import os
from PIL import Image
def crop_white_padding(image):
# Convert image to numpy array
image_np = np.array(image)
# Check the number of channels in the image
num_channels = image_np.shape[-1]
# Create a mask for non-white pixels
if num_channels == 4: # If the image has an alpha channel
mask = (image_np[:, :, :3] < [255, 255, 255]).any(axis=-1)
else: # If the image does not have an alpha channel
mask = (image_np < [255, 255, 255]).any(axis=-1)
# Find the bounding box of the non-white areas
coords = np.column_stack(np.where(mask))
y0, x0 = coords.min(axis=0)
y1, x1 = coords.max(axis=0)
# Crop the image to the bounding box, ensuring no white border is left
cropped_image = image.crop((x0, y0, x1+1, y1+1))
return cropped_image
def crop_and_split_image(image):
# Crop the white padding first
cropped_img = crop_white_padding(image)
# Split the cropped image into 6 parts horizontally
width, height = cropped_img.size
segment_width = width // 6
segments = []
for i in range(6):
left = i * segment_width
right = (i + 1) * segment_width if (i < 5) else width
segment = cropped_img.crop((left, 0, right, height))
segments.append(segment)
return segments
def process_and_save_images(image_base_path, genres, processed_base_path):
if not os.path.exists(processed_base_path):
os.makedirs(processed_base_path)
for genre in genres:
genre_path = os.path.join(image_base_path, genre)
processed_genre_path = os.path.join(processed_base_path, genre)
if not os.path.exists(processed_genre_path):
os.makedirs(processed_genre_path)
for image_file in os.listdir(genre_path):
if image_file.endswith('.png'):
image_path = os.path.join(genre_path, image_file)
img = Image.open(image_path)
# Process the image to remove white padding and then split it
segments = crop_and_split_image(img)
# Save each segment
for idx, segment in enumerate(segments):
# Generate a new filename for each segment
base_filename, _ = os.path.splitext(image_file)
new_filename = f"{base_filename}_part_{idx+1}.png"
processed_image_path = os.path.join(processed_genre_path, new_filename)
segment.save(processed_image_path)
# def process_and_save_images(image_base_path, genres, processed_base_path):
# if not os.path.exists(processed_base_path):
# os.makedirs(processed_base_path)
# for genre in genres:
# genre_path = os.path.join(image_base_path, genre)
# processed_genre_path = os.path.join(processed_base_path, genre)
# if not os.path.exists(processed_genre_path):
# os.makedirs(processed_genre_path)
# for image_file in os.listdir(genre_path):
# if image_file.endswith('.png'):
# image_path = os.path.join(genre_path, image_file)
# img = Image.open(image_path)
# # Process the image to remove white padding
# processed_img = crop_white_padding(img)
# # Save the processed image
# processed_image_path = os.path.join(processed_genre_path, image_file)
# processed_img.save(processed_image_path)
path_to_data = '/blue/ruogu.fang/rohanshah1/Data/images_original/'
# Base path where the processed images will be saved
processed_base_path = '/blue/ruogu.fang/rohanshah1/ml/images_processed/'
# Genres list as provided
genres = ["rock", "reggae", "pop", "metal", "jazz", "hiphop", "disco", "country", "classical", "blues"]
# Process images
process_and_save_images(path_to_data, genres, processed_base_path)
# IF YOU COMMENT THE CURRENT PROCESS_AND_SAVE_IMAGES FUNCTION AND UNCOMMENT THE TWO METHODS ABOVE IT, IT WILL DO
# THE SPLIT INTO SIX IMAGES. THE WAY IT IS NOW JUST REMOVES THE WHITE SPACE