-
Notifications
You must be signed in to change notification settings - Fork 0
/
pxlrage.cs
1153 lines (977 loc) · 31.1 KB
/
pxlrage.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Name: pixelrage, C# version
* Written by Jon Lennart Aasenden (jonlennartaasenden.wordpress.com) 02.2011 - 04.2012
* This unit is Buddha Ware (be kind to someone!)
*
* I would like to thank Nils Haeck (http://www.simdesign.nl) for sharing his Delphi code.
* Without his help my code could never have been ported.
* If you use Delphi make sure to check out his native components that are outstanding.
*
* I must also mention Nick Vuono, who shared his C# implementation of the Bresham line
* algorithm (http://www.codeproject.com/KB/graphics/bresenham_revisited.aspx) covering
* all four cardinal access points. Sadly our Delphi integer version did not convert well.
*
* =========================================
* 22.05.12 - cleanup, added to pub:svn
*
* 13.03.11 - Added Push/Pop methods for ClipRect and Pen color
*
* 12.03.11 - Fixed: FillRect offset by 1 pixel, dumped for/next in favour of "While"
* - Fixed: Line not correctly rendered (missing endpoints)
*
*
*/
#define iphone
#define debug
using System;
using System.Drawing;
using System.Collections;
#if iphone
using MonoTouch.CoreGraphics;
#endif
using System.Runtime.InteropServices;
namespace pxlrage
{
//##########################################################################################################
// Custom datatypes and structures
//##########################################################################################################
public enum TPixelFormat
{
pfNone=0,
#if iphone
pf32Bit=4
#else
pf16bit=2,
pf24Bit=3,
pf32Bit=4
#endif
}
/* RGB color structure */
[StructLayout(LayoutKind.Sequential, Pack=1)]
public struct TRGBTriple
{
public byte R;
public byte G;
public byte B;
}
//##########################################################################################################
// Color class
//##########################################################################################################
public class TColor
{
private byte FRed;
private byte FGreen;
private byte FBlue;
private UInt32 FColor;
public byte Red
{
get { return FRed; }
set {
FRed = value;
FColor = RGBToColor(FRed,FGreen,FBlue);
}
}
public byte Green
{
get { return FGreen; }
set {
FGreen = value;
FColor = RGBToColor(FRed,FGreen,FBlue);
}
}
public byte Blue
{
get { return FBlue; }
set {
FBlue = value;
FColor = RGBToColor(FRed,FGreen,FBlue);
}
}
public UInt32 Color
{
get { return FColor; }
set {
FColor = value;
ColorToRGB(FColor,out FRed,out FGreen,out FBlue);
}
}
public class Presets
{
public static UInt32 Green
{ get { return TColor.RGBToColor(0,0xff,0); } }
public static UInt32 Red
{ get { return TColor.RGBToColor(0xff,0,0); } }
public static UInt32 Black
{ get { return TColor.RGBToColor(0,0,0); } }
public static UInt32 Blue
{ get { return TColor.RGBToColor(0,0,0xff); } }
public static UInt32 White
{ get { return TColor.RGBToColor(0xff,0xff,0xff); } }
public static UInt32 Yellow
{ get { return TColor.RGBToColor(0xff,0xff,0); } }
public static UInt32 ButtonFace
{ get { return TColor.RGBToColor(230,230,230); } }
public static UInt32 ButtonShadow
{ get { return TColor.RGBToColor(163,163,163); } }
}
public static UInt32 RGBToColor(byte R, byte G, byte B)
{ return (UInt32)(R | ( G << 8 ) | ( B << 16 ) ); }
public static string RGBToString(byte r, byte g, byte b)
{ return RGBToColor(r,g,b).ToString("X8"); }
public static string RGBToString(TRGBTriple aColor)
{ return RGBToColor(aColor.R,aColor.G,aColor.B).ToString("X8"); }
public static string ColorToString(UInt32 aColor)
{ return aColor.ToString("X8"); }
public static void ColorToRGB(UInt32 aValue,out byte R, out byte G, out byte B)
{
R = (byte) aValue;
G = (byte)( aValue >> 8 );
B = (byte)( aValue >> 16 );
}
public static TRGBTriple ColorToRGB(UInt32 aColor)
{
TRGBTriple mTemp = new TRGBTriple();
mTemp.R = (byte) aColor;
mTemp.G = (byte)( aColor >> 8 );
mTemp.B = (byte)( aColor >> 16 );
return mTemp;
}
}
//##########################################################################################################
// Pixel Readers & Writers
//##########################################################################################################
/* Baseclass, Pixel Reader/Writer */
public class TPixelIO
{
public unsafe virtual void WriteTo(byte* pTarget,byte R,byte G, byte B)
{ throw new Exception("Not implemented error"); }
public unsafe virtual void WriteTo(byte* pTarget,ref UInt32 ColorValue)
{ throw new Exception("Not implemented error"); }
public unsafe virtual void WriteTo(byte* pTarget, ref TRGBTriple aValue)
{ throw new Exception("Not implemented error"); }
public unsafe virtual TRGBTriple ReadFrom(byte* pSource)
{ throw new Exception("Not implemented error"); }
public unsafe virtual void WriteRep(byte* pTarget, int aCount, ref TRGBTriple aValue)
{ throw new Exception("Not implemented error"); }
}
/* 32Bit Pixel IO class */
public class TPixelIO32:TPixelIO
{
public unsafe override void WriteRep(byte* pTarget, int aCount, ref TRGBTriple aValue)
{
int mLongs = aCount / 8;
int mSingles = aCount - (mLongs * 8);
while (mLongs>0)
{
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
pTarget += 4;
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
pTarget += 4;
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
pTarget += 4;
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
pTarget += 4;
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
pTarget += 4;
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
pTarget += 4;
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
pTarget += 4;
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
pTarget += 4;
mLongs --;
}
while (mSingles>0)
{
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
pTarget += 4;
mSingles --;
}
}
public unsafe override void WriteTo(byte* pTarget,byte R,byte G,byte B)
{
pTarget[1] = R;
pTarget[2] = G;
pTarget[3] = B;
}
public unsafe override void WriteTo(byte* pTarget, ref TRGBTriple aValue)
{
pTarget[1] = aValue.R;
pTarget[2] = aValue.G;
pTarget[3] = aValue.B;
}
public unsafe override void WriteTo(byte* pTarget,ref UInt32 ColorValue)
{
TRGBTriple mTemp = TColor.ColorToRGB(ColorValue);
pTarget[1] = mTemp.R;
pTarget[2] = mTemp.G;
pTarget[3] = mTemp.B;
}
public unsafe override TRGBTriple ReadFrom(byte* pSource)
{
TRGBTriple mRaw;
mRaw.R = pSource[1];
mRaw.G = pSource[2];
mRaw.B = pSource[3];
return mRaw;
}
}
//##########################################################################################################
// Pixmap (bitmap) surface
//##########################################################################################################
public class TBitmap: IDisposable
{
/* Class error messages */
private const string
ERR_PIXMAP_EMPTY = "Operation failed, pixmap not allocated error",
ERR_PIXMAP_FAILEDALLOCATEMEMORY = "Failed to allocate memory for pixmap error",
ERR_PIXMAP_FAILEDALLOCATECONTEXT = "Failed to allocate device context, native error",
ERR_PIXMAP_INVALIDPIXELFORMAT = "Failed to allocate pixmap, invalid pixelformat error",
ERR_PIXMAP_INVALIDDIMENSION = "Failed to allocate pixmap, invalid dimension error",
ERR_PIXMAP_FAILEDRELEASE = "Failed to release pixmap, native error",
ERR_PIXMAP_INVALIDXYPOS = "Invalid X/Y position for byte-offset error",
ERR_PIXMAP_INVALIDROWFORSCANLINE = "Invalid scanline row, expected {0}..{1}";
private IntPtr FBuffer = IntPtr.Zero;
private int FBufferSize = 0;
private int FWidth = 0;
private int FHeight = 0;
private int FScanLine = 0;
private int FPxSize = 0;
private TPixelIO FIO;
private Rectangle FBounds;
private Rectangle FClipRect;
private TPixelFormat FFormat = TPixelFormat.pfNone;
private TColor FPen;
private Point FCursor;
#if iphone
private CGBitmapContext FContext = null;
#endif
private Stack FClipStack = null;
private Stack FColorStack = null;
public int PixelSize
{ get { return FPxSize; } }
public TPixelFormat PixelFormat
{ get { return FFormat; } }
public int Width
{ get { return FWidth; } }
public int Height
{ get { return FHeight; } }
public bool Empty
{ get { return FBuffer==IntPtr.Zero; } }
public int ScanLineSize
{ get { return FScanLine; } }
public Rectangle ClipRect
{
get { return FClipRect; }
set { FClipRect = AdjustToBounds(ClipRect); }
}
public Rectangle BoundsRect
{ get { return FBounds; } }
public TColor Pen
{ get { return FPen; }
set { FPen.Color = Pen.Color; }
}
/* Constructor */
public TBitmap()
{
FPen = new TColor();
FBounds = Rectangle.Empty;
FClipRect = Rectangle.Empty;
FCursor = Point.Empty;
FClipStack = new System.Collections.Stack();
FColorStack = new System.Collections.Stack();
}
/* Destructor */
~TBitmap()
{ Dispose(false); }
/* IDisposable::Dispose */
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
/* IDisposable::Dispose */
protected virtual void Dispose(bool disposing)
{
if (disposing)
{
//Release normal objects here
FClipStack = null;
FColorStack = null;
}
/* Any native data allocated? */
if (Empty != true)
{
#if debug
Console.WriteLine("Releasing pixmap data");
#endif
Release();
}
}
public unsafe void Allocate(int aWidth, int aHeight, TPixelFormat aFormat)
{
/* Check if a buffer is already allocated.
Release it at once if this is the case */
if (Empty !=true)
Release();
/* Check With & Height parameters */
if (aWidth>0 && aHeight>0)
{
/* Make sure pixelformat is acceptable */
if (aFormat != TPixelFormat.pfNone)
{
FPxSize = Convert.ToInt32(aFormat);
/* First, calculate the bytesize of a single row, this is called
a scanline's stride, because it's rounded up to the nearest 4 byte
boundary. Most developers avoid this and as a result their
applications will fail because of memory fragmentation. This is
warned about by both Microsoft and Apple in both their SDk's
documentation on allocating memory for pixels. */
FScanLine = CalcStrideAlign(aWidth, FPxSize, 4);
/* Calculate the total number of bytes req. for the pixmap */
FBufferSize = FScanLine * aHeight;
/* The next section of code has to be marked "unsafe" because we allocate
our memory buffer directly from the system. It's actually just as safe
as anything else if you know what you are doing. */
try {
FBuffer=Marshal.AllocHGlobal(FBufferSize);
} catch (Exception e) {
FBufferSize=0;
FScanLine=0;
FPxSize=0;
throw new Exception(ERR_PIXMAP_FAILEDALLOCATEMEMORY,e);
}
/* Allocate native device context for iOS */
#if iphone
try {
FContext = new CGBitmapContext(FBuffer,aWidth,
aHeight,8,FScanLine,
CGColorSpace.CreateDeviceRGB(),
CGImageAlphaInfo.NoneSkipFirst);
} catch (Exception e) {
/* Release memory */
Marshal.FreeHGlobal(FBuffer);
FBufferSize=0;
FPxSize=0;
throw new Exception(ERR_PIXMAP_FAILEDALLOCATECONTEXT,e);
}
#endif
/* keep properties */
FWidth = aWidth;
FHeight = aHeight;
FFormat = aFormat;
FBounds = new Rectangle(0,0,FWidth-1,FHeight-1);
FClipRect = FBounds;
/* create the correct PIXEL IO driver */
switch (FFormat)
{
#if iphone
case TPixelFormat.pf32Bit:
FIO = new TPixelIO32();
break;
#else
case TPixelFormat.pf16bit:
FIO = new TPixelIO16();
break;
case TPixelFormat.pf24Bit:
FIO = new TPixelIO24();
break;
case TPixelFormat.pf32Bit:
FIO = new TPixelIO32();
break;
#endif
}
#if iphone
/* Set context properties, ignore possible OS errors at this point */
try {
FContext.InterpolationQuality = CGInterpolationQuality.None;
FContext.SetShouldAntialias(false);
} catch {
return;
}
#endif
} else
throw new Exception(ERR_PIXMAP_INVALIDPIXELFORMAT);
} else
throw new Exception(ERR_PIXMAP_INVALIDDIMENSION);
}
public unsafe void Release()
{
/* Check if pixelbuffer is empty */
if (FBuffer != IntPtr.Zero)
{
try
{
try {
/* Release allocated memory block */
Marshal.FreeHGlobal(FBuffer);
} catch (Exception e) {
throw new Exception(ERR_PIXMAP_FAILEDRELEASE,e);
}
} finally {
FContext.Dispose();
FContext = null;
FIO = null;
/* reset format values */
FBuffer = IntPtr.Zero;
FBufferSize = 0;
FWidth = 0;
FHeight = 0;
FScanLine = 0;
FPxSize =0;
FCursor = Point.Empty;
FFormat = TPixelFormat.pfNone;
FClipStack.Clear();
FColorStack.Clear();
}
}
}
public int PixelOffset(int xpos, int ypos)
{
if (FBuffer != IntPtr.Zero)
{
if (xpos>=0 && xpos<FWidth
&& ypos>=0 && ypos<FHeight)
{ return (ypos * FScanLine) + (xpos * FPxSize); } else
throw new Exception(ERR_PIXMAP_INVALIDXYPOS);
} else
throw new Exception(ERR_PIXMAP_EMPTY);
}
public unsafe byte* ScanLine(int Row)
{
if (FBuffer != IntPtr.Zero)
{
if (Row>=0 && Row<FHeight)
{
byte* mTemp = (byte*)FBuffer + (Row * FScanLine);
return mTemp;
} else
throw new Exception(string.Format(ERR_PIXMAP_INVALIDROWFORSCANLINE,0,FHeight-1));
} else
throw new Exception(ERR_PIXMAP_EMPTY);
}
public unsafe byte* PixelAddr(int Col,int Row)
{
if (FBuffer != IntPtr.Zero)
{
if (Col >= 0 && Col <FWidth && Row>=0 && Row < FHeight)
{
byte* mTemp = (byte*)FBuffer + (Row * FScanLine) + (Col * FPxSize);
return mTemp;
} else
throw new Exception(ERR_PIXMAP_INVALIDXYPOS);
} else
throw new Exception(ERR_PIXMAP_EMPTY);
}
private int CalcStrideAlign(int aValue, int elementSize, int alignsize)
{
int ftemp = aValue * elementSize;
if ( (ftemp % alignsize) >0 )
{ return (ftemp + alignsize) - (ftemp % alignsize); } else
return ftemp;
}
public Rectangle AdjustToBounds(Rectangle aRect)
{
if (FBounds != Rectangle.Empty)
{
int dx, dy, dx2, dy2;
if (aRect.Left<0) { dx=0; } else { dx=aRect.Left; }
if (aRect.Top<0) { dy=0; } else { dy=aRect.Top; }
if (aRect.Right>FBounds.Right) { dx2=FBounds.Right; } else { dx2=aRect.Right; }
if (aRect.Bottom>FBounds.Bottom) { dy2=FBounds.Bottom; } else { dy2=aRect.Bottom; }
return new Rectangle(dx,dy,(dx2-dx)+1,(dy2-dy)+1);
} else
return Rectangle.Empty;
}
public Rectangle AdjustToClipRect(Rectangle aRect)
{
if (FClipRect != Rectangle.Empty)
{
int dx, dy, dx2, dy2;
if (aRect.Left<FClipRect.Left) { dx=FClipRect.Left; } else { dx=aRect.Left; }
if (aRect.Top<FClipRect.Top) { dy=FClipRect.Top; } else { dy=aRect.Top; }
if (aRect.Right>FClipRect.Right) { dx2=FClipRect.Right; } else { dx2=aRect.Right; }
if (aRect.Bottom>FClipRect.Bottom) { dy2=FClipRect.Bottom; } else { dy2=aRect.Bottom; }
return new Rectangle(dx,dy,(dx2-dx)+1,(dy2-dy)+1);
} else
return Rectangle.Empty;
}
public void PushClipRect(Rectangle aNewClipRect)
{
if (FBuffer != IntPtr.Zero)
{
FClipStack.Push(FClipRect);
FClipRect = this.AdjustToBounds(aNewClipRect);
}
}
public void PushClipRect()
{
if (FBuffer != IntPtr.Zero)
{ FClipStack.Push(FClipRect); }
}
public void PopClipRect()
{
if (FBuffer != IntPtr.Zero)
{
if (FClipStack.Count >0)
FClipRect = (Rectangle)FClipStack.Pop();
}
}
public void PushPenColor(UInt32 aNewColor)
{
if (FBuffer != IntPtr.Zero)
{
FColorStack.Push(FPen.Color);
FPen.Color = aNewColor;
}
}
public void PushPenColor()
{
if (FBuffer != IntPtr.Zero)
{ FColorStack.Push(FPen.Color); }
}
public void PopPenColor()
{
if (FBuffer != IntPtr.Zero)
{
if (FColorStack.Count>0)
Pen.Color = (UInt32)FColorStack.Pop();
}
}
public unsafe void Cls()
{ Cls(Pen.Color); }
public unsafe void Cls(UInt32 aColor)
{
if (FBuffer != IntPtr.Zero)
{
TRGBTriple mTemp = TColor.ColorToRGB(aColor);
/* Get a byte-array pointer to our buffer */
byte* bufPtr = (byte*)((void*)FBuffer);
/* for each row in the bitmap */
int y=0;
while (y<FHeight)
{
/* quickly fill enture scanline */
FIO.WriteRep(bufPtr,FWidth,ref mTemp);
/* update pointer for next scanline */
bufPtr+=FScanLine;
y++;
}
} else
throw new Exception(ERR_PIXMAP_EMPTY);
}
private void __SwapColors(ref UInt32 afirst, ref UInt32 aSecond)
{
UInt32 mTemp = afirst;
afirst = aSecond;
aSecond = mTemp;
}
private void __SwapInt(ref Int32 afirst, ref Int32 aSecond)
{
Int32 mTemp = afirst;
afirst = aSecond;
aSecond = mTemp;
}
public void Frame3d(Rectangle aValue,UInt32 aLight,UInt32 aDark)
{ Frame3d(aValue,aLight,aDark,true); }
public void Frame3d(Rectangle aValue,UInt32 aLight,UInt32 aDark,bool aRaised)
{
if (aValue.IsEmpty != true)
{
if (aRaised == false)
__SwapColors(ref aLight,ref aDark);
Line(aValue.Left,aValue.Bottom,aValue.Left,aValue.Top,aLight);
Line(aValue.Left+1,aValue.Top,aValue.Right,aValue.Top,aLight);
Line(aValue.Left+1,aValue.Bottom,aValue.Right,aValue.Bottom,aDark);
Line(aValue.Right,aValue.Bottom-1,aValue.Right,aValue.Top+1,aDark);
}
}
public void Frame3d(Rectangle aValue,UInt32 aLight,UInt32 aDark,UInt32 aFillColor,bool aRaised)
{
if (aValue.IsEmpty != true)
{
Frame3d(aValue,aLight,aDark,aRaised);
aValue.Inflate(-2,-2);
if (aValue.IsEmpty != true)
RectFill(aValue,aFillColor);
}
}
public void RectOutline(Rectangle aValue)
{ RectOutline(aValue, Pen.Color); }
public void RectOutline(Rectangle aValue, UInt32 aColor)
{
Line(aValue.Left,aValue.Top,aValue.Right,aValue.Top);
Line(aValue.Right,aValue.Top,aValue.Right,aValue.Bottom);
Line(aValue.Left,aValue.Top,aValue.Left,aValue.Bottom);
Line(aValue.Left,aValue.Bottom,aValue.Right,aValue.Bottom);
}
public unsafe void RectFill(Rectangle Value, UInt32 aColor)
{
if (FBuffer != IntPtr.Zero)
{
Value = AdjustToClipRect(Value);
if (Value.IsEmpty != true)
{
/* get an RGB structure */
TRGBTriple mTemp = TColor.ColorToRGB(aColor);
/* Get a byte-array pointer to our buffer */
byte* bufPtr = (byte*)((void*)FBuffer);
int y = Value.Top;
while (y < Value.Bottom)
{
byte* pTarget = bufPtr;
pTarget += ( (y * FScanLine) + (Value.Left * FPxSize) );
FIO.WriteRep(pTarget,Value.Width,ref mTemp);
y++;
}
}
} else
throw new Exception(ERR_PIXMAP_EMPTY);
}
public void PolyOutline(Point[] aPoints)
{ PolyOutline(aPoints,Pen.Color); }
public void PolyOutline(Point[] aPoints,UInt32 aColor)
{
if (aPoints.Length >1)
{
UInt32 mOldColor = Pen.Color;
Pen.Color = aColor;
for (int x=0;x<aPoints.Length;x++)
{
if (x==0)
{ MoveTo(aPoints[aPoints.GetLowerBound(0)]); } else
{ LineTo(aPoints[aPoints.GetLowerBound(0) + x]); }
}
Pen.Color = mOldColor;
}
}
public void RectFill(Rectangle aValue)
{ RectFill(aValue,Pen.Color); }
public unsafe void SetPixel(int Left,int Top)
{ SetPixel(Left,Top,Pen.Color); }
public unsafe void SetPixel(int Left,int Top,UInt32 aColor)
{
if (FBuffer != IntPtr.Zero)
{
if (FClipRect.Contains(Left,Top))
{
TRGBTriple mTemp = TColor.ColorToRGB(aColor);
/* Get a byte-array pointer to our buffer */
byte* bufPtr = (byte*)((void*)FBuffer);
/* Adjust to get pixel adress */
bufPtr += ( (Top * FScanLine) + (Left * FPxSize) );
/* Write pixel through driver */
FIO.WriteTo(bufPtr,ref mTemp);
FCursor.X = Left;
FCursor.Y = Top;
}
} else
throw new Exception(ERR_PIXMAP_EMPTY);
}
public void MoveTo(Point aPos)
{
if (FBuffer != IntPtr.Zero)
{ FCursor = aPos; } else
throw new Exception(ERR_PIXMAP_EMPTY);
}
public void MoveTo(int aLeft, int aTop)
{
if (FBuffer != IntPtr.Zero)
{ FCursor = new Point(aLeft,aTop); } else
throw new Exception(ERR_PIXMAP_EMPTY);
}
public void LineTo(int Left,int Top)
{ Line(FCursor.X,FCursor.Y,Left,Top); }
public void LineTo(Point aPos)
{ Line(FCursor.X,FCursor.Y,aPos.X,aPos.Y); }
public void Line(int x1,int y1,int x2,int y2)
{ Line(new Point(x1,y1),new Point(x2,y2), Pen.Color); }
public void Line(int x1, int y1, int x2, int y2, UInt32 aColor)
{ Line(new Point(x1,y1),new Point(x2,y2), aColor); }
public void Line(Point begin, Point end)
{ Line(begin,end,Pen.Color); }
/* Adapted from Nick Vuono's C# implementation of the bresham method */
public void Line(Point begin, Point end, UInt32 aColor)
{
if (FBuffer != IntPtr.Zero)
{
if (Math.Abs(end.Y - begin.Y) < Math.Abs(end.X - begin.X))
{
if (end.X >= begin.X)
{
Point nextPoint = begin;
int deltax = end.X - begin.X;
int deltay = end.Y - begin.Y;
int error = deltax / 2;
int ystep = 1;
if (end.Y < begin.Y) { ystep = -1; } else
if (end.Y == begin.Y) { ystep = 0; }
while (nextPoint.X < end.X)
{
if (nextPoint != begin && nextPoint != end)
SetPixel(nextPoint.X,nextPoint.Y,aColor);
nextPoint.X++;
error -= deltay;
if (error < 0)
{
nextPoint.Y += ystep;
error += deltax;
}
}
}
else
{
Point nextPoint = begin;
int deltax = end.X - begin.X;
int deltay = end.Y - begin.Y;
int error = deltax / 2;
int ystep = 1;
if (end.Y < begin.Y) { ystep = -1; } else
if (end.Y == begin.Y) { ystep = 0; }
while (nextPoint.X > end.X)
{
if (nextPoint != begin && nextPoint != end)
SetPixel(nextPoint.X,nextPoint.Y,aColor);
nextPoint.X--;
error += deltay;
if (error < 0)
{
nextPoint.Y += ystep;
error -= deltax;
}
}
}
}
else
{
if (end.Y >= begin.Y)
{
Point nextPoint = begin;
int deltax = Math.Abs(end.X - begin.X);
int deltay = end.Y - begin.Y;
int error = Math.Abs(deltax / 2);
int xstep = 1;
if (end.X < begin.X) { xstep = -1; } else
if (end.X == begin.X) { xstep = 0; }
while (nextPoint.Y < end.Y)
{
if (nextPoint != begin && nextPoint != end)
SetPixel(nextPoint.X,nextPoint.Y,aColor);
nextPoint.Y++;
error -= deltax;
if (error < 0)
{
nextPoint.X += xstep;
error += deltay;
}
}
}
else
{
Point nextPoint = begin;
int deltax = end.X - begin.X;
int deltay = end.Y - begin.Y;
int error = deltax / 2;
int xstep = 1;
if (end.X < begin.X) { xstep = -1; } else
if (end.X == begin.X) { xstep = 0; }
while (nextPoint.Y > end.Y)
{
if (nextPoint != begin && nextPoint != end)
SetPixel(nextPoint.X,nextPoint.Y,aColor);
nextPoint.Y--;
error += deltax;
if (error < 0)
{
nextPoint.X += xstep;
error -= deltay;
}
}
}
/* Now close endpoints */
SetPixel(begin.X,begin.Y,aColor);
SetPixel(end.X,end.Y,aColor);
}
} else
throw new Exception(ERR_PIXMAP_EMPTY);
}
public void CircleOutline(Rectangle aRect)
{
CircleOutline(new Point(aRect.Left + (aRect.Width / 2), aRect.Top + (aRect.Height / 2)),Math.Min(aRect.Width,aRect.Height) / 2);
}
/* Adapted from Nick Vuono's C# implementation of the bresham algorythm */
public void CircleOutline(Point midpoint, int radius)
{
if (FBuffer != IntPtr.Zero)
{
Point returnPoint = new Point();
int f = 1 - radius;
int ddF_x = 1;
int ddF_y = -2 * radius;
int x = 0;
int y = radius;
returnPoint.X = midpoint.X;
returnPoint.Y = midpoint.Y + radius;
SetPixel(returnPoint.X,returnPoint.Y);
returnPoint.Y = midpoint.Y - radius;
SetPixel(returnPoint.X,returnPoint.Y);
returnPoint.X = midpoint.X + radius;
returnPoint.Y = midpoint.Y;
SetPixel(returnPoint.X,returnPoint.Y);
returnPoint.X = midpoint.X - radius;
SetPixel(returnPoint.X,returnPoint.Y);
while (x < y)
{