diff --git a/qualtran/bloqs/gf_arithmetic/gf2_inverse.ipynb b/qualtran/bloqs/gf_arithmetic/gf2_inverse.ipynb index 6a5a4b73b..dec031115 100644 --- a/qualtran/bloqs/gf_arithmetic/gf2_inverse.ipynb +++ b/qualtran/bloqs/gf_arithmetic/gf2_inverse.ipynb @@ -58,7 +58,10 @@ " a^{-1} = a^{2^m - 2}\n", "$$\n", "\n", - "Thus, the inverse can be obtained via $m - 1$ squaring and multiplication operations.\n", + "The exponential $a^{2^m - 2}$ is computed using $\\mathcal{O}(m)$ squaring and\n", + "$\\mathcal{O}(\\log_2(m))$ multiplications via Itoh-Tsujii inversion. The algorithm is described on\n", + "page 4 and 5 of Ref[1] and resembles binary exponentiation. The inverse is computed as $B_{n-1}^2$,\n", + "where $B_1 = x$ and $B_{i+j} = B_i B_j^{2^i}$.\n", "\n", "#### Parameters\n", " - `bitsize`: The degree $m$ of the galois field $GF(2^m)$. Also corresponds to the number of qubits in the input register whose inverse should be calculated. \n", @@ -66,7 +69,11 @@ "#### Registers\n", " - `x`: Input THRU register of size $m$ that stores elements from $GF(2^m)$.\n", " - `result`: Output RIGHT register of size $m$ that stores $x^{-1}$ from $GF(2^m)$.\n", - " - `junk`: Output RIGHT register of size $m$ and shape ($m - 2$) that stores results from intermediate multiplications.\n" + " - `junk`: Output RIGHT register of size $m$ and shape ($m - 2$) that stores results from intermediate multiplications. \n", + "\n", + "#### References\n", + " - [Efficient quantum circuits for binary elliptic curve arithmetic: reducing T -gate complexity](https://arxiv.org/abs/1209.6348). Section 2.3\n", + " - [Structure of parallel multipliers for a class of fields GF(2^m)](https://doi.org/10.1016/0890-5401(89)90045-X)\n" ] }, { diff --git a/qualtran/bloqs/gf_arithmetic/gf2_inverse.py b/qualtran/bloqs/gf_arithmetic/gf2_inverse.py index 20d0cf54d..eb0e80f4f 100644 --- a/qualtran/bloqs/gf_arithmetic/gf2_inverse.py +++ b/qualtran/bloqs/gf_arithmetic/gf2_inverse.py @@ -30,10 +30,11 @@ from qualtran.bloqs.gf_arithmetic.gf2_addition import GF2Addition from qualtran.bloqs.gf_arithmetic.gf2_multiplication import GF2Multiplication from qualtran.bloqs.gf_arithmetic.gf2_square import GF2Square -from qualtran.symbolics import is_symbolic, SymbolicInt +from qualtran.resource_counting.generalizers import ignore_alloc_free, ignore_split_join +from qualtran.symbolics import bit_length, ceil, is_symbolic, log2, SymbolicInt if TYPE_CHECKING: - from qualtran import BloqBuilder, Soquet + from qualtran import BloqBuilder, Soquet, SoquetT from qualtran.resource_counting import BloqCountDictT, BloqCountT, CostKey, SympySymbolAllocator from qualtran.simulation.classical_sim import ClassicalValT @@ -62,7 +63,10 @@ class GF2Inverse(Bloq): a^{-1} = a^{2^m - 2} $$ - Thus, the inverse can be obtained via $m - 1$ squaring and multiplication operations. + The exponential $a^{2^m - 2}$ is computed using $\mathcal{O}(m)$ squaring and + $\mathcal{O}(\log_2(m))$ multiplications via Itoh-Tsujii inversion. The algorithm is described on + page 4 and 5 of Ref[1] and resembles binary exponentiation. The inverse is computed as $B_{n-1}^2$, + where $B_1 = x$ and $B_{i+j} = B_i B_j^{2^i}$. Args: bitsize: The degree $m$ of the galois field $GF(2^m)$. Also corresponds to the number of @@ -73,6 +77,12 @@ class GF2Inverse(Bloq): result: Output RIGHT register of size $m$ that stores $x^{-1}$ from $GF(2^m)$. junk: Output RIGHT register of size $m$ and shape ($m - 2$) that stores results from intermediate multiplications. + + References: + [Efficient quantum circuits for binary elliptic curve arithmetic: reducing T -gate complexity](https://arxiv.org/abs/1209.6348). + Section 2.3 + + [Structure of parallel multipliers for a class of fields GF(2^m)](https://doi.org/10.1016/0890-5401(89)90045-X) """ bitsize: SymbolicInt @@ -80,8 +90,8 @@ class GF2Inverse(Bloq): @cached_property def signature(self) -> 'Signature': junk_reg = ( - [Register('junk', dtype=self.qgf, shape=(self.bitsize - 2,), side=Side.RIGHT)] - if is_symbolic(self.bitsize) or self.bitsize > 2 + [Register('junk', dtype=self.qgf, shape=(self.n_junk_regs,), side=Side.RIGHT)] + if is_symbolic(self.bitsize) or self.bitsize > 1 else [] ) return Signature( @@ -96,60 +106,111 @@ def signature(self) -> 'Signature': def qgf(self) -> QGF: return QGF(characteristic=2, degree=self.bitsize) + @cached_property + def n_junk_regs(self) -> SymbolicInt: + return 2 * bit_length(self.bitsize - 1) + self.bitsize_hamming_weight + + @cached_property + def bitsize_hamming_weight(self) -> SymbolicInt: + """Hamming weight of self.bitsize - 1""" + return ( + bit_length(self.bitsize - 1) + if is_symbolic(self.bitsize) + else int(self.bitsize - 1).bit_count() + ) + def my_static_costs(self, cost_key: 'CostKey'): + from qualtran._infra.gate_with_registers import total_bits from qualtran.resource_counting import QubitCount if isinstance(cost_key, QubitCount): - return self.signature.n_qubits() + return total_bits(self.signature.rights()) return NotImplemented - def build_composite_bloq(self, bb: 'BloqBuilder', *, x: 'Soquet') -> Dict[str, 'Soquet']: + def build_composite_bloq(self, bb: 'BloqBuilder', *, x: 'Soquet') -> Dict[str, 'SoquetT']: if is_symbolic(self.bitsize): raise DecomposeTypeError(f"Cannot decompose symbolic {self}") + result = bb.allocate(dtype=self.qgf) if self.bitsize == 1: x, result = bb.add(GF2Addition(self.bitsize), x=x, y=result) return {'x': x, 'result': result} - x = bb.add(GF2Square(self.bitsize), x=x) - x, result = bb.add(GF2Addition(self.bitsize), x=x, y=result) - junk = [] - for i in range(2, self.bitsize): - x = bb.add(GF2Square(self.bitsize), x=x) - x, result, new_result = bb.add(GF2Multiplication(self.bitsize), x=x, y=result) - junk.append(result) - result = new_result - x = bb.add(GF2Square(self.bitsize), x=x) - return {'x': x, 'result': result} | ({'junk': np.array(junk)} if junk else {}) + beta = bb.allocate(dtype=self.qgf) + x, beta = bb.add(GF2Addition(self.bitsize), x=x, y=beta) + is_first = True + bitsize_minus_one = int(self.bitsize - 1) + for i in range(bitsize_minus_one.bit_length()): + if (1 << i) & bitsize_minus_one: + if is_first: + beta, result = bb.add(GF2Addition(self.bitsize), x=beta, y=result) + is_first = False + else: + for j in range(2**i): + result = bb.add(GF2Square(self.bitsize), x=result) + beta, result, new_result = bb.add( + GF2Multiplication(self.bitsize), x=beta, y=result + ) + junk.append(result) + result = new_result + beta_squared = bb.allocate(dtype=self.qgf) + beta, beta_squared = bb.add(GF2Addition(self.bitsize), x=beta, y=beta_squared) + for j in range(2**i): + beta_squared = bb.add(GF2Square(self.bitsize), x=beta_squared) + beta, beta_squared, beta_new = bb.add( + GF2Multiplication(self.bitsize), x=beta, y=beta_squared + ) + junk.extend([beta, beta_squared]) + beta = beta_new + junk.append(beta) + result = bb.add(GF2Square(self.bitsize), x=result) + assert len(junk) == self.n_junk_regs, f'{len(junk)=}, {self.n_junk_regs=}' + return {'x': x, 'result': result, 'junk': np.array(junk)} def build_call_graph( self, ssa: 'SympySymbolAllocator' ) -> Union['BloqCountDictT', Set['BloqCountT']]: - if is_symbolic(self.bitsize) or self.bitsize > 2: - return { - GF2Addition(self.bitsize): 1, - GF2Square(self.bitsize): self.bitsize - 1, - GF2Multiplication(self.bitsize): self.bitsize - 2, - } - return {GF2Addition(self.bitsize): 1} | ( - {GF2Square(self.bitsize): 1} if self.bitsize == 2 else {} - ) + if not is_symbolic(self.bitsize) and self.bitsize == 1: + return {GF2Addition(self.bitsize): 1} + square_count = self.bitsize + 2 ** ceil(log2(self.bitsize)) - 1 + if not is_symbolic(self.bitsize): + n = self.bitsize - 1 + square_count -= n & (-n) + return { + GF2Addition(self.bitsize): 2 + ceil(log2(self.bitsize)), + GF2Square(self.bitsize): square_count, + GF2Multiplication(self.bitsize): ceil(log2(self.bitsize)) + + self.bitsize_hamming_weight + - 1, + } def on_classical_vals(self, *, x) -> Dict[str, 'ClassicalValT']: assert isinstance(x, self.qgf.gf_type) - x_temp = x**2 - result = x_temp junk = [] - for i in range(2, int(self.bitsize)): - junk.append(result) - x_temp = x_temp * x_temp - result = result * x_temp + bitsize_minus_one = int(self.bitsize - 1) + beta = x + result = self.qgf.gf_type(0) + is_first = True + for i in range(bitsize_minus_one.bit_length()): + if (1 << i) & bitsize_minus_one: + if is_first: + is_first = False + result = beta + else: + for j in range(2**i): + result = result**2 + junk.append(result) + result = result * beta + beta_squared = beta ** (2 ** (2**i)) + junk.extend([beta, beta_squared]) + beta = beta * beta_squared + junk.append(beta) return {'x': x, 'result': x ** (-1), 'junk': np.array(junk)} -@bloq_example +@bloq_example(generalizer=[ignore_split_join, ignore_alloc_free]) def _gf16_inverse() -> GF2Inverse: gf16_inverse = GF2Inverse(4) return gf16_inverse diff --git a/qualtran/bloqs/gf_arithmetic/gf2_inverse_test.py b/qualtran/bloqs/gf_arithmetic/gf2_inverse_test.py index 3b3371283..91b793c67 100644 --- a/qualtran/bloqs/gf_arithmetic/gf2_inverse_test.py +++ b/qualtran/bloqs/gf_arithmetic/gf2_inverse_test.py @@ -22,7 +22,9 @@ GF2Inverse, ) from qualtran.resource_counting import get_cost_value, QECGatesCost, QubitCount -from qualtran.testing import assert_consistent_classical_action +from qualtran.resource_counting.generalizers import ignore_alloc_free, ignore_split_join +from qualtran.symbolics import ceil, log2 +from qualtran.testing import assert_consistent_classical_action, assert_equivalent_bloq_counts def test_gf16_inverse(bloq_autotester): @@ -36,8 +38,10 @@ def test_gf2_inverse_symbolic(bloq_autotester): def test_gf2_inverse_symbolic_toffoli_complexity(): bloq = _gf2_inverse_symbolic.make() m = bloq.bitsize - assert get_cost_value(bloq, QECGatesCost()).total_toffoli_only() - m**2 * (m - 2) == 0 - assert sympy.simplify(get_cost_value(bloq, QubitCount()) - m**2) == 0 + expected_expr = m**2 * (2 * ceil(log2(m)) - 1) + assert get_cost_value(bloq, QECGatesCost()).total_toffoli_only() - expected_expr == 0 + expected_expr = m * (3 * ceil(log2(m)) + 2) + assert sympy.simplify(get_cost_value(bloq, QubitCount()) - expected_expr) == 0 def test_gf2_inverse_classical_sim_quick(): @@ -53,3 +57,9 @@ def test_gf2_inverse_classical_sim(m): bloq = GF2Inverse(m) GFM = GF(2**m) assert_consistent_classical_action(bloq, x=GFM.elements[1:]) + + +@pytest.mark.parametrize('m', [*range(1, 12)]) +def test_gf2_equivalent_bloq_counts(m): + bloq = GF2Inverse(m) + assert_equivalent_bloq_counts(bloq, generalizer=[ignore_split_join, ignore_alloc_free]) diff --git a/qualtran/bloqs/gf_arithmetic/gf2_multiplication.ipynb b/qualtran/bloqs/gf_arithmetic/gf2_multiplication.ipynb index 03bb4ddca..b001a27dd 100644 --- a/qualtran/bloqs/gf_arithmetic/gf2_multiplication.ipynb +++ b/qualtran/bloqs/gf_arithmetic/gf2_multiplication.ipynb @@ -56,12 +56,13 @@ "gates.\n", "\n", "#### Parameters\n", - " - `bitsize`: The degree $m$ of the galois field $GF(2^m)$. Also corresponds to the number of qubits in each of the two input registers $a$ and $b$ that should be multiplied. \n", + " - `bitsize`: The degree $m$ of the galois field $GF(2^m)$. Also corresponds to the number of qubits in each of the two input registers $a$ and $b$ that should be multiplied.\n", + " - `plus_equal_prod`: If True, implements the `PlusEqualProduct` version that applies the map $|x\\rangle |y\\rangle |z\\rangle \\rightarrow |x\\rangle |y\\rangle |x + z\\rangle$. \n", "\n", "#### Registers\n", " - `x`: Input THRU register of size $m$ that stores elements from $GF(2^m)$.\n", " - `y`: Input THRU register of size $m$ that stores elements from $GF(2^m)$.\n", - " - `result`: Output RIGHT register of size $m$ that stores the product $x * y$ in $GF(2^m)$. \n", + " - `result`: Register of size $m$ that stores the product $x * y$ in $GF(2^m)$. If plus_equal_prod is True - result is a THRU register and stores $result + x * y$. If plus_equal_prod is False - result is a RIGHT register and stores $x * y$. \n", "\n", "#### References\n", " - [On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography](https://arxiv.org/abs/0710.1093). \n", @@ -99,7 +100,7 @@ }, "outputs": [], "source": [ - "gf16_multiplication = GF2Multiplication(4)" + "gf16_multiplication = GF2Multiplication(4, plus_equal_prod=True)" ] }, { @@ -114,7 +115,7 @@ "import sympy\n", "\n", "m = sympy.Symbol('m')\n", - "gf2_multiplication_symbolic = GF2Multiplication(m)" + "gf2_multiplication_symbolic = GF2Multiplication(m, plus_equal_prod=False)" ] }, { diff --git a/qualtran/bloqs/gf_arithmetic/gf2_multiplication.py b/qualtran/bloqs/gf_arithmetic/gf2_multiplication.py index 4f91ecaa0..48e3a7f1e 100644 --- a/qualtran/bloqs/gf_arithmetic/gf2_multiplication.py +++ b/qualtran/bloqs/gf_arithmetic/gf2_multiplication.py @@ -51,18 +51,19 @@ class SynthesizeLRCircuit(Bloq): """Synthesize linear reversible circuit using CNOT gates. Args: - matrix: An n x m matrix describing the linear transformation. + matrix: An n x n matrix describing the linear transformation. References: [Efficient Synthesis of Linear Reversible Circuits](https://arxiv.org/abs/quant-ph/0302002) """ matrix: Union[Shaped, np.ndarray] = attrs.field(eq=_data_or_shape_to_tuple) + is_adjoint: bool = False def __attrs_post_init__(self): assert len(self.matrix.shape) == 2 n, m = self.matrix.shape - assert is_symbolic(n, m) or n >= m + assert is_symbolic(n, m) or n == m @cached_property def signature(self) -> 'Signature': @@ -72,10 +73,13 @@ def signature(self) -> 'Signature': def on_classical_vals(self, *, q: 'ClassicalValT') -> Dict[str, 'ClassicalValT']: matrix = self.matrix assert isinstance(matrix, np.ndarray) + if self.is_adjoint: + matrix = np.linalg.inv(matrix) + assert np.allclose(matrix, matrix.astype(int)) + matrix = matrix.astype(int) _, m = matrix.shape assert isinstance(q, np.ndarray) - q_in = q[:m] - return {'q': (matrix @ q_in) % 2} + return {'q': (matrix @ q) % 2} def build_call_graph( self, ssa: 'SympySymbolAllocator' @@ -83,6 +87,9 @@ def build_call_graph( n = self.matrix.shape[0] return {CNOT(): ceil(n**2 / log2(n))} + def adjoint(self) -> 'SynthesizeLRCircuit': + return attrs.evolve(self, is_adjoint=not self.is_adjoint) + @attrs.frozen class GF2Multiplication(Bloq): @@ -108,11 +115,15 @@ class GF2Multiplication(Bloq): Args: bitsize: The degree $m$ of the galois field $GF(2^m)$. Also corresponds to the number of qubits in each of the two input registers $a$ and $b$ that should be multiplied. + plus_equal_prod: If True, implements the `PlusEqualProduct` version that applies the + map $|x\rangle |y\rangle |z\rangle \rightarrow |x\rangle |y\rangle |x + z\rangle$. Registers: x: Input THRU register of size $m$ that stores elements from $GF(2^m)$. y: Input THRU register of size $m$ that stores elements from $GF(2^m)$. - result: Output RIGHT register of size $m$ that stores the product $x * y$ in $GF(2^m)$. + result: Register of size $m$ that stores the product $x * y$ in $GF(2^m)$. + If plus_equal_prod is True - result is a THRU register and stores $result + x * y$. + If plus_equal_prod is False - result is a RIGHT register and stores $x * y$. References: @@ -124,14 +135,16 @@ class GF2Multiplication(Bloq): """ bitsize: SymbolicInt + plus_equal_prod: bool = False @cached_property def signature(self) -> 'Signature': + result_side = Side.THRU if self.plus_equal_prod else Side.RIGHT return Signature( [ Register('x', dtype=self.qgf), Register('y', dtype=self.qgf), - Register('result', dtype=self.qgf, side=Side.RIGHT), + Register('result', dtype=self.qgf, side=result_side), ] ) @@ -143,7 +156,7 @@ def qgf(self) -> QGF: def reduction_matrix_q(self) -> np.ndarray: m = int(self.bitsize) f = self.qgf.gf_type.irreducible_poly - M = np.zeros((m - 1, m)) + M = np.zeros((m, m)) alpha = [1] + [0] * m for i in range(m - 1): # x ** (m + i) % f @@ -151,6 +164,7 @@ def reduction_matrix_q(self) -> np.ndarray: coeffs = coeffs + [0] * (m - len(coeffs)) M[i] = coeffs alpha += [0] + M[m - 1][m - 1] = 1 return np.transpose(M) @cached_property @@ -162,14 +176,18 @@ def synthesize_reduction_matrix_q(self) -> SynthesizeLRCircuit: else SynthesizeLRCircuit(self.reduction_matrix_q) ) - def build_composite_bloq( - self, bb: 'BloqBuilder', *, x: 'Soquet', y: 'Soquet' - ) -> Dict[str, 'Soquet']: + def build_composite_bloq(self, bb: 'BloqBuilder', **soqs: 'Soquet') -> Dict[str, 'Soquet']: if is_symbolic(self.bitsize): raise DecomposeTypeError(f"Cannot decompose symbolic {self}") - result = bb.allocate(dtype=self.qgf) + x, y = soqs['x'], soqs['y'] + result = soqs['result'] if self.plus_equal_prod else bb.allocate(dtype=self.qgf) x, y, result = bb.split(x)[::-1], bb.split(y)[::-1], bb.split(result)[::-1] m = int(self.bitsize) + + # Step-0: PlusEqualProduct special case. + if self.plus_equal_prod: + result = bb.add(self.synthesize_reduction_matrix_q.adjoint(), q=result) + # Step-1: Multiply Monomials. for i in range(m): for j in range(i + 1, m): @@ -199,16 +217,21 @@ def build_call_graph( self, ssa: 'SympySymbolAllocator' ) -> Union['BloqCountDictT', Set['BloqCountT']]: m = self.bitsize - return {Toffoli(): m**2, self.synthesize_reduction_matrix_q: 1} + plus_equal_prod = ( + {self.synthesize_reduction_matrix_q.adjoint(): 1} if self.plus_equal_prod else {} + ) + return {Toffoli(): m**2, self.synthesize_reduction_matrix_q: 1} | plus_equal_prod - def on_classical_vals(self, *, x, y) -> Dict[str, 'ClassicalValT']: - assert isinstance(x, self.qgf.gf_type) and isinstance(y, self.qgf.gf_type) - return {'x': x, 'y': y, 'result': x * y} + def on_classical_vals(self, **vals) -> Dict[str, 'ClassicalValT']: + assert all(isinstance(val, self.qgf.gf_type) for val in vals.values()) + x, y = vals['x'], vals['y'] + result = vals['result'] if self.plus_equal_prod else self.qgf.gf_type(0) + return {'x': x, 'y': y, 'result': result + x * y} @bloq_example def _gf16_multiplication() -> GF2Multiplication: - gf16_multiplication = GF2Multiplication(4) + gf16_multiplication = GF2Multiplication(4, plus_equal_prod=True) return gf16_multiplication @@ -217,7 +240,7 @@ def _gf2_multiplication_symbolic() -> GF2Multiplication: import sympy m = sympy.Symbol('m') - gf2_multiplication_symbolic = GF2Multiplication(m) + gf2_multiplication_symbolic = GF2Multiplication(m, plus_equal_prod=False) return gf2_multiplication_symbolic diff --git a/qualtran/bloqs/gf_arithmetic/gf2_multiplication_test.py b/qualtran/bloqs/gf_arithmetic/gf2_multiplication_test.py index 94eaba106..a37b0cddf 100644 --- a/qualtran/bloqs/gf_arithmetic/gf2_multiplication_test.py +++ b/qualtran/bloqs/gf_arithmetic/gf2_multiplication_test.py @@ -12,13 +12,16 @@ # See the License for the specific language governing permissions and # limitations under the License. +import numpy as np import pytest from galois import GF +from qualtran import QGF from qualtran.bloqs.gf_arithmetic.gf2_multiplication import ( _gf2_multiplication_symbolic, _gf16_multiplication, GF2Multiplication, + SynthesizeLRCircuit, ) from qualtran.testing import assert_consistent_classical_action @@ -31,9 +34,51 @@ def test_gf2_multiplication_symbolic(bloq_autotester): bloq_autotester(_gf2_multiplication_symbolic) +def test_synthesize_lr_circuit(): + m = 2 + matrix = GF2Multiplication(m).reduction_matrix_q + bloq = SynthesizeLRCircuit(matrix) + bloq_adj = bloq.adjoint() + QGFM, GFM = QGF(2, m), GF(2**m) + for i in GFM.elements: + bloq_out = bloq.call_classically(q=np.array(QGFM.to_bits(i)))[0] + bloq_adj_out = bloq_adj.call_classically(q=bloq_out)[0] + assert isinstance(bloq_adj_out, np.ndarray) + assert i == QGFM.from_bits([*bloq_adj_out]) + + +@pytest.mark.slow +@pytest.mark.parametrize('m', [3, 4, 5]) +def test_synthesize_lr_circuit_slow(m): + matrix = GF2Multiplication(m).reduction_matrix_q + bloq = SynthesizeLRCircuit(matrix) + bloq_adj = bloq.adjoint() + QGFM, GFM = QGF(2, m), GF(2**m) + for i in GFM.elements: + bloq_out = bloq.call_classically(q=np.array(QGFM.to_bits(i)))[0] + bloq_adj_out = bloq_adj.call_classically(q=bloq_out)[0] + assert isinstance(bloq_adj_out, np.ndarray) + assert i == QGFM.from_bits([*bloq_adj_out]) + + +def test_gf2_plus_equal_prod_classical_sim_quick(): + m = 2 + bloq = GF2Multiplication(m, plus_equal_prod=True) + GFM = GF(2**m) + assert_consistent_classical_action(bloq, x=GFM.elements, y=GFM.elements, result=GFM.elements) + + +@pytest.mark.slow +def test_gf2_plus_equal_prod_classical_sim(): + m = 3 + bloq = GF2Multiplication(m, plus_equal_prod=True) + GFM = GF(2**m) + assert_consistent_classical_action(bloq, x=GFM.elements, y=GFM.elements, result=GFM.elements) + + def test_gf2_multiplication_classical_sim_quick(): m = 2 - bloq = GF2Multiplication(m) + bloq = GF2Multiplication(m, plus_equal_prod=False) GFM = GF(2**m) assert_consistent_classical_action(bloq, x=GFM.elements, y=GFM.elements) @@ -41,6 +86,6 @@ def test_gf2_multiplication_classical_sim_quick(): @pytest.mark.slow @pytest.mark.parametrize('m', [3, 4, 5]) def test_gf2_multiplication_classical_sim(m): - bloq = GF2Multiplication(m) + bloq = GF2Multiplication(m, plus_equal_prod=False) GFM = GF(2**m) assert_consistent_classical_action(bloq, x=GFM.elements, y=GFM.elements)