-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathswh_kitti.yaml
263 lines (220 loc) · 7.34 KB
/
swh_kitti.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
- NAME: gt_sampling
USE_ROAD_PLANE: False # TODO: swith this to True
DB_INFO_PATH:
- kitti_dbinfos_train.pkl
PREPARE: {
filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Cyclist:5'],
filter_by_difficulty: [-1],
}
SAMPLE_GROUPS: ['Car:15','Pedestrian:10', 'Cyclist:10']
NUM_POINT_FEATURES: 4
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
LIMIT_WHOLE_SCENE: False
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x']
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.95, 1.05]
DATA_SPLIT: {
'train': train,
'test': test
}
INFO_PATH: {
'train': [ kitti_infos_train.pkl ],
'test': [ kitti_infos_test.pkl ],
}
MODEL:
NAME: SECONDWithHead
VFE:
NAME: MeanVFE
BACKBONE_3D:
NAME: VoxelBackBone8x
NORM_TYPE: batch
MAP_TO_BEV:
NAME: HeightCompression
NUM_BEV_FEATURES: 256
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [5, 5]
LAYER_STRIDES: [1, 2]
NUM_FILTERS: [128, 256]
UPSAMPLE_STRIDES: [1, 2]
NUM_UPSAMPLE_FILTERS: [256, 256]
DENSE_HEAD:
NAME: AnchorHeadSingle
CLASS_AGNOSTIC: False
USE_DIRECTION_CLASSIFIER: True
DIR_OFFSET: 0.78539
DIR_LIMIT_OFFSET: 0.0
NUM_DIR_BINS: 2
ANCHOR_GENERATOR_CONFIG: [
{
'class_name': 'Car',
'anchor_sizes': [[3.9, 1.6, 1.56]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-1.78],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.6,
'unmatched_threshold': 0.45
},
{
'class_name': 'Pedestrian',
'anchor_sizes': [[0.8, 0.6, 1.73]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-0.6],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
},
{
'class_name': 'Cyclist',
'anchor_sizes': [[1.76, 0.6, 1.73]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-0.6],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
}
]
TARGET_ASSIGNER_CONFIG:
NAME: AxisAlignedTargetAssigner
POS_FRACTION: -1.0
SAMPLE_SIZE: 512
NORM_BY_NUM_EXAMPLES: False
MATCH_HEIGHT: False
BOX_CODER: ResidualCoder
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 2.0,
'dir_weight': 0.2,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
POINT_HEAD:
ENABLE: True
POINT_TASKS: ['cls', 'part', 'reg'] # 'cls', 'part', 'reg'
NAME: SECONDPointHead
CLASS_AGNOSTIC: True
POINT_SRC: [ 'x_conv3', 'x_conv4' ] # ['x_conv??'] or ['unet_out']
POINT_SRC_DIM: [ 64, 64 ]
POINT_SRC_UNIFIED_DIM: 64
POINT_REGRESS_TO: center # or box, none
POINT_CLOUD_RANGE: [ 0, -40, -3, 70.4, 40, 1 ]
VOXEL_SIZE: [ 0.05, 0.05, 0.1 ]
CLS_FC: [ 128 ]
PART_FC: [ 128 ]
REG_FC: [ 128 ]
TARGET_CONFIG:
GT_EXTRA_WIDTH: [ 0.2, 0.2, 0.2 ]
BOX_CODER: PointResidualCoder
BOX_CODER_CONFIG: {
'use_mean_size': True,
'mean_size': [
[ 3.9, 1.6, 1.56 ],
[ 0.8, 0.6, 1.73 ],
[ 1.76, 0.6, 1.73 ]
]
}
LOSS_CONFIG:
LOSS_REG: WeightedSmoothL1Loss
LOSS_WEIGHTS: {
'point_cls_weight': 1.0,
'point_part_weight': 1.0,
'point_box_weight': 1.0,
'code_weights': [1.0, 1.0, 1.0] # regress to center only need 3
}
ROI_HEAD:
NAME: SECONDAttnHead
CLASS_AGNOSTIC: True
POINT_CLOUD_RANGE: [ 0, -40, -3, 70.4, 40, 1 ]
VOXEL_SIZE: [ 0.05, 0.05, 0.1 ]
N_CLASS: 3
SHARED_FC: [ 256, 256 ]
CLS_FC: [ 256, 256 ]
REG_FC: [ 256, 256 ]
DP_RATIO: 0.3
ROI_POINT_POOL:
POOL_SRC: [ 'x_conv4', 'x_conv3', 'x_conv1' ]
N_POINTS_PER_SRC: [ 64, 128, 256 ]
POOL_SRC_DIM: [ 64, 64, 16 ]
POOL_EXTRA_WIDTH: [ 0.5, 0.5, 0.5 ]
MAP_TO_ROI_CANONICAL: True
ATTENTION:
NUM_TRANSFORMERS: 4 # applicable if not use sequential attn
DIM: 128
POSITION_ENCODING_MODE: center_and_corners_diff # Options: center_diff, center_and_corners_diff
# the following is only applicable if using sequential attention
SEQUENTIAL: True
N_REPETITION: 3
NMS_CONFIG:
TRAIN:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS: False
NMS_PRE_MAXSIZE: 9000
NMS_POST_MAXSIZE: 512
NMS_THRESH: 0.8
TEST:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS: False
NMS_PRE_MAXSIZE: 1024
NMS_POST_MAXSIZE: 100
NMS_THRESH: 0.7
TARGET_CONFIG:
BOX_CODER: ResidualCoder
ROI_PER_IMAGE: 128 # TODO: to increase
FG_RATIO: 0.5
SAMPLE_ROI_BY_EACH_CLASS: True
CLS_SCORE_TYPE: roi_iou
CLS_FG_THRESH: 0.75
CLS_BG_THRESH: 0.25
CLS_BG_THRESH_LO: 0.1
HARD_BG_RATIO: 0.8
REG_FG_THRESH: 0.55
LOSS_CONFIG:
CLS_LOSS: BinaryCrossEntropy
REG_LOSS: smooth-l1
CORNER_LOSS_REGULARIZATION: True
LOSS_WEIGHTS: {
'rcnn_cls_weight': 1.0,
'rcnn_reg_weight': 1.0,
'rcnn_corner_weight': 1.0,
'code_weights': [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ],
}
POST_PROCESSING:
RECALL_THRESH_LIST: [ 0.3, 0.5, 0.7 ]
SCORE_THRESH: 0.1
OUTPUT_RAW_SCORE: False
EVAL_METRIC: kitti
NMS_CONFIG:
MULTI_CLASSES_NMS: False
NMS_TYPE: nms_gpu
NMS_THRESH: 0.1
NMS_PRE_MAXSIZE: 4096
NMS_POST_MAXSIZE: 500
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 2
NUM_EPOCHS: 100
OPTIMIZER: adam_onecycle
LR: 0.01
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10