forked from GERSL/Fmask
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoFmask.m
261 lines (221 loc) · 10.4 KB
/
autoFmask.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
function clr_pct = autoFmask(varargin)
% AUTOFMASK Automatedly detect clouds, cloud shadows, snow, and water for
% Landsats 4-7 TM/EMT+, Landsat 8 OLI/TIRS, and Sentinel 2 MSI images.
%
%
% Description
%
% This 4.4 version has better cloud, cloud shadow, and snow detection
% results for Sentinel-2 data and better results (compared to the 3.3
% version that is being used by USGS as the Colection 1 QA Band) for
% Landsats 4-8 data as well.
%
% If any questions, please do not hesitate to contact
% Shi Qiu ([email protected]) and Zhe Zhu ([email protected])
%
%
% Input arguments
%
% cloud Dilated number of pixels for cloud with default value of 3.
% shadow Dilated number of pixels for cloud shadow with default value of 3.
% snow Dilated number of pixels for snow with default value of 0.
% p Cloud probability threshold with default values of 10.0 for
% Landsats 4~7, 17.5 for Landsat 8, and 20.0 for Sentinel 2.
% d Radius of dilation for Potential False Positive Cloud such as
% urban/built-up and (mountian) snow/ice. Default: 0 meters.
% Higher the value, Larger the potential false positive cloud
% layer. This is used for the places where the orginal Potential
% False Positive Cloud Layer fails to include the false
% posistive clouds.
% e Radius of erosion for Potential False Positive Cloud such as
% urban/built-up and (mountian) snow/ice. Default: 150 meters
% for Landsats 4-7 and 90 meters for Landsat 8 and
% Sentinel-2.
% sw ShadowWater (SW) means the shadow of cloud over water.
% Default: False
% We do not suggest mask out the cloud shadow over water
% since it is less meanful and very time-comsuing.
% udem The path of User's DEM data. (.tiff). If users provide
% local DEM data, Fmask 4.1 will process the image along with this DEM
% data; or, the default USGS GTOPO30 will be used.
%
% Output arguments
%
% fmask 0: clear land
% 1: clear water
% 2: cloud shadow
% 3: snow
% 4: cloud
% 255: filled (outside)
%
% Examples
%
% clr_pct = autoFmask('cloud',0, 'shadow', 0) will produce the mask without buffers.
% clr_pct = autoFmask('p',20) forces cloud probablity thershold as 20.
% clr_pct = autoFmask('e',500) forces erosion radius for Potential False Positive Cloud as 500 meters to remove the large commission errors.
%
%
% Author: Shi Qiu ([email protected]) and Zhe Zhu ([email protected])
% Last Date: Dec. 26, 2021
% Copyright @ GERS Lab, UCONN.
warning('off','all'); % do not show warning information
tic
fmask_soft_name='Fmask 4.4';
fprintf('%s start ...\n',fmask_soft_name);
path_data=pwd;
%% get parameters from inputs
p = inputParser;
p.FunctionName = 'FmaskParas';
% optional
% default values.
addParameter(p,'cloud',3);
addParameter(p,'shadow',3);
addParameter(p,'snow',0);
%% read info from .xml.
[sensor,~,InputFile,main_meta] = LoadSensorType(path_data);
if isempty(sensor)
error('%s works only for Landsats 4-7, Landsat 8, and Sentinel 2 images.\n',fmask_soft_name);
end
default_paras = FmaskParameters(sensor);
tpw = default_paras.ThinWeight;
addParameter(p,'d',default_paras.PFPCLayerExtensinRadius);
addParameter(p,'e',default_paras.PFPCErosionRadius);
addParameter(p,'p',default_paras.CloudProbabilityThershold);
addParameter(p,'resolution',default_paras.OutputResolution);
addParameter(p,'sw',default_paras.ShadowWater);
% user's path for DEM
addParameter(p,'udem','');
% request user's input
parse(p,varargin{:});
resolution=p.Results.resolution;
cldpix=p.Results.cloud;
sdpix=p.Results.shadow;
snpix=p.Results.snow;
expdpix = round(p.Results.d/resolution);
erdpix=round(p.Results.e/resolution);
cldprob=p.Results.p;
isShadowater = p.Results.sw;
% users can use the local dem.
userdem = p.Results.udem;
clear p;
fprintf('Cloud/cloud shadow/snow dilated by %d/%d/%d pixels.\n',cldpix,sdpix,snpix);
fprintf('Cloud probability threshold of %.2f%%.\n',cldprob);
fprintf('Load or calculate TOA reflectances.\n');
%% load data
[data_meta,data_toabt,angles_view,trgt] = LoadData(path_data,sensor,InputFile,main_meta);
clear InputFile norMTL;
if isempty(userdem)
% default DEM
[dem,slope,aspect,water_occur] = LoadAuxiData(fullfile(path_data,data_meta.Output),data_meta.Name,data_meta.BBox,trgt,false); % true false
else
[dem,slope,aspect,water_occur] = LoadAuxiData(fullfile(path_data,data_meta.Output),data_meta.Name,data_meta.BBox,trgt,false,'userdem',userdem); % true false
end
fprintf('Detect potential clouds, cloud shadows, snow, and water.\n');
%% public data
mask=ObservMask(data_toabt.BandBlue);
% a pixel's DEM can be set as the lowest value derived from the all workable pixels.
if ~isempty(dem)
dem_nan=isnan(dem);
dem(dem_nan)=double(prctile(dem(~dem_nan&mask),0.001)); % exclude DEM errors.
clear dem_nan;
end
% NDVI NDSI NDBI
ndvi = NDVI(data_toabt.BandRed, data_toabt.BandNIR);
ndsi = NDSI(data_toabt.BandGreen, data_toabt.BandSWIR1);
cdi = CDI(data_toabt.BandVRE3,data_toabt.BandNIR8,data_toabt.BandNIR);% band 7, 8, AND 8a
data_toabt.BandVRE3 = [];
data_toabt.BandNIR8 = [];
% Statured Visible Bands
satu_Bv = Saturate(data_toabt.SatuBlue, data_toabt.SatuGreen, data_toabt.SatuRed);
data_toabt.SatuBlue = [];
%% select potential cloud pixels (PCPs)
% inputs: BandSWIR2 BandBT BandBlue BandGreen BandRed BandNIR BandSWIR1
% BandCirrus
% [idplcd,BandCirrusNormal,whiteness,HOT] = DetectPotentialPixels(mask,data_toabt,dem,ndvi,ndsi,satu_Bv);
%% detect snow
psnow = DetectSnow(data_meta.Dim, data_toabt.BandGreen, data_toabt.BandNIR, data_toabt.BandBT, ndsi);
%% detect water
[water, waterAll] = DetectWater(data_meta.Dim, mask, data_toabt.BandNIR, ndvi, psnow, slope, water_occur);
clear water_occur;
[idplcd,BandCirrusNormal,whiteness,HOT] = DetectPotentialPixels(mask,data_toabt,dem,ndvi,ndsi,satu_Bv);
data_toabt.BandBlue = [];
data_toabt.BandRed = [];
data_toabt.BandSWIR2 = [];
clear satu_Bv;
data_toabt.BandCirrus = BandCirrusNormal; %refresh Cirrus band.
clear BandCirrusNormal;
%% select pure snow/ice pixels.
abs_snow = DetectAbsSnow(data_toabt.BandGreen,data_toabt.SatuGreen,ndsi,psnow,data_meta.Resolution(1));
if ~isnan(abs_snow)
idplcd(abs_snow==1)=0; clear abs_snow; % remove pure snow/ice pixels from all PCPs.
end
%% detect potential cloud
ndbi = NDBI(data_toabt.BandNIR, data_toabt.BandSWIR1);
% inputs: BandCirrus BandBT BandSWIR1 SatuGreen SatuRed
[sum_clr,pcloud_all,idlnd,t_templ,t_temph]=DetectPotentialCloud(data_meta,mask,water,data_toabt, dem, ndvi,ndsi,ndbi,idplcd,whiteness,HOT,tpw,cldprob);
clear ndsi idplcd whiteness HOT tpw cldprob;
data_toabt.SatuGreen = [];
data_toabt.SatuRed = [];
data_toabt.BandCirrus = [];
%% detect potential flase positive cloud layer, including urban, coastline, and snow/ice.
pfpl = DetectPotentialFalsePositivePixels(mask, psnow, slope, ndbi, ndvi, data_toabt.BandBT,cdi, water,data_meta.Resolution(1));
clear ndbi ndvi;
% buffer the potential false positive cloud layer.
if expdpix>0
PFPCEs=strel('square',2*expdpix+1);
pfpl=imdilate(pfpl,PFPCEs);
clear PFPCEs;
end
clear expdpix;
%% remove most of commission errors from urban, bright rock, and coastline.
pcloud = ErodeCommissons(data_meta,pcloud_all,pfpl,water,cdi,erdpix);
clear cdi;
%% detect cloud shadow
cs_final = zeros(data_meta.Dim,'uint8'); % final masks, including cloud, cloud shadow, snow, and water.
cs_final(water==1)=1; %water is fistly stacked because of its always lowest prioty.
% note that 0.1% Landsat obersavtion is about 40,000 pixels, which will be used in the next statistic analyses.
% when potential cloud cover less than 0.1%, directly screen all PCPs out.
if sum_clr <= 40000
fprintf('No clear pixel in this image (clear-sky pixels = %.0f%)\n',sum_clr);
pcloud=pcloud>0;
pshadow=~pcloud;
clear data_toabt;
else
fprintf('Match cloud shadows with clouds.\n');
% detect potential cloud shadow
pshadow = DetectPotentialCloudShadow(data_meta, data_toabt.BandNIR,data_toabt.BandSWIR1,idlnd,mask,...
slope,aspect);
data_toabt.BandNIR = [];
data_toabt.BandSWIR1 = [];
data_bt_c=data_toabt.BandBT;
clear data_toabt;
% match cloud shadow, and return clouds and cloud shadows.
[ ~,pcloud, pshadow] = MatchCloudShadow(...
mask,pcloud,pshadow,isShadowater,waterAll, dem ,data_bt_c,t_templ,t_temph,data_meta,sum_clr,14,angles_view);
% make buffer for final masks.
% the called cloud indicate those clouds are have highest piroity.
% This is final cloud!
[pcloud,pshadow,psnow] = BufferMasks(pcloud,cldpix,pshadow,sdpix,psnow,snpix);
end
%% stack results together.
% step 1 snow or unknow
cs_final(psnow==1)=3; % snow
% step 2 shadow above snow and everyting
cs_final(pshadow==1)=2; %shadow
% step 3 cloud above all
cs_final(pcloud==1)=4; % cloud
% mask out no data.
cs_final(mask==0)=255; % mask
% clear pixels percentage
clr_pct=100*(1-sum(pcloud(:))/sum(mask(:)));
%% output as geotiff.
trgt.Z=cs_final;
fmask_name=[data_meta.Name,'_Fmask4'];
trgt.name=fmask_name;
fmask_output=fullfile(path_data,data_meta.Output,[fmask_name,'.tif']);
GRIDobj2geotiff(trgt,fmask_output);
time=toc;
time=time/60;
fprintf('%s finished (%.2f minutes)\nfor %s with %.2f%% clear pixels\n\n',...
fmask_soft_name,time,data_meta.Name,clr_pct);
end