Skip to content

Latest commit

 

History

History
225 lines (165 loc) · 10.9 KB

how-to-use-gvfs.md

File metadata and controls

225 lines (165 loc) · 10.9 KB
title slug license
How to use Gravitino Virtual File System with Filesets
/how-to-use-gvfs
Copyright 2024 Datastrato Pvt Ltd. This software is licensed under the Apache License version 2.

Introduction

Fileset is a concept brought in by Gravitino, which is a logical collection of files and directories, with fileset you can manage the non-tabular data through Gravitino. For the details you can see How to manage fileset metadata using Gravitino.

To use Fileset managed by Gravitino, Gravitino provides a virtual file system layer called Gravitino Virtual File System (GVFS) that is built on top of the Hadoop Compatible File System (HCFS) interface.

GVFS is a virtual layer that manages the files and directories in the fileset through a virtual path, without needing to understand the specific storage details of the fileset. You can access the files or folders like below:

gvfs://fileset/${catalog_name}/${schema_name}/${fileset_name}/sub_dir/

Here gvfs is the scheme of the GVFS, fileset is the root directory of the GVFS and cannot be modified, the ${catalog_name}/${schema_name}/${fileset_name} is the virtual path of the fileset. You can access the files and folders under this virtual path by concatenating the file or folder name to the virtual path.

The usage pattern for GVFS is exactly the same as HDFS, S3 and others, GVFS internally will manage the path mapping and converting automatically.

Prerequisites

  • A Hadoop environment (Hadoop 3.1.0 has been tested) with HDFS running. GVFS is built against Hadoop 3.1.0, it is recommended to use Hadoop 3.1.0 or later, but it should work with Hadoop 2. x. Please create an issue if you find any compatibility issues.
  • You already manage the filesets with Gravitino.

Configuration

Configuration item Description Default value Required Since version
fs.AbstractFileSystem.gvfs.impl The Gravitino Virtual File System abstract class. Please configure it as com.datastrato.gravitino.filesystem.hadoop.Gvfs. (none) Yes 0.5.0
fs.gvfs.impl The Gravitino Virtual File System implementation class. Please configure it as com.datastrato.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem. (none) Yes 0.5.0
fs.gvfs.impl.disable.cache Close the Gravitino Virtual File System cache in Hadoop environment. If you need to proxy multi-user operations, please set this value to true and create a separate File System for each user. false No 0.5.0
fs.gravitino.server.uri The Gravitino server uri which gvfs needs to load the fileset meta. (none) Yes 0.5.0
fs.gravitino.client.metalake The metalake which fileset belongs. (none) Yes 0.5.0
fs.gravitino.fileset.cache.maxCapacity The cache capacity in the Gravitino Virtual File System. 20 No 0.5.0
fs.gravitino.fileset.cache.evictionMillsAfterAccess The value of time that the cache evicts the element after access in the Gravitino Virtual File System. The value is in milliseconds. 300000 No 0.5.0

You can configure these properties in two ways:

  1. Before getting the FileSystem in the code, construct the Configuration and set the properties:

    Configuration conf = new Configuration();
    conf.set("fs.AbstractFileSystem.gvfs.impl","com.datastrato.gravitino.filesystem.hadoop.Gvfs");
    conf.set("fs.gvfs.impl","com.datastrato.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
    conf.set("fs.gravitino.server.uri","http://localhost:8090");
    conf.set("fs.gravitino.client.metalake","test_metalake");
    Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
    FileSystem fs = filesetPath.getFileSystem(conf);
  2. Configure these properties in the core-site.xml file of the Hadoop environment:

      <property>
        <name>fs.AbstractFileSystem.gvfs.impl</name>
        <value>com.datastrato.gravitino.filesystem.hadoop.Gvfs</value>
      </property>
    
      <property>
        <name>fs.gvfs.impl</name>
        <value>com.datastrato.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem</value>
      </property>
    
      <property>
        <name>fs.gravitino.server.uri</name>
        <value>http://localhost:8090</value>
      </property>
    
      <property>
        <name>fs.gravitino.client.metalake</name>
        <value>test_metalake</value>
      </property>

How to use

Please make sure to have the Gravitino Virtual File System runtime jar firstly, you can get it in two ways:

  1. Download from the maven central repository: You can download the runtime jar which name is like gravitino-filesystem-hadoop3-runtime-{version}.jar from Maven repository.

  2. Compile from the source code:

    Download the Gravitino source code, and compile it locally using the following command in the Gravitino source code directory:

       ./gradlew :clients:filesystem-hadoop3-runtime:build -x test

Use GVFS via Hadoop shell command

You can use the Hadoop shell command to operate the fileset storage. For example:

# 1. Configure the hadoop `core-site.xml` configuration
# you should put the properties above into this file
vi ${HADOOP_HOME}/etc/hadoop/core-site.xml

# 2. Place the gvfs runtime jar into your Hadoop environment
cp gravitino-filesystem-hadoop3-runtime-{version}.jar ${HADOOP_HOME}/share/hadoop/common/lib/

# 3. Complete the Kerberos authentication of the Hadoop environment (if necessary).
# You need to ensure that the Kerberos has permission to operate the HDFS directory.
kinit -kt your_kerberos.keytab [email protected]

# 4. Try to list the fileset
./${HADOOP_HOME}/bin/hadoop dfs -ls gvfs://fileset/test_catalog/test_schema/test_fileset_1

Use GVFS via Java code

You can also operate the files or directories managed by fileset through Java code. Please make sure that your code is running in the correct Hadoop environment, and the environment has the gravitino-filesystem-hadoop3-runtime-{version}.jar dependency.

For example:

Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","com.datastrato.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","com.datastrato.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf);
fs.getFileStatus(filesetPath);

Use GVFS with Apache Spark

  1. Add the gvfs runtime jar to the Spark environment.

    You can use --packages or --jars in the Spark submit shell to include the Gravitino Virtual File System runtime jar, like this:

    ./${SPARK_HOME}/bin/spark-submit --packages com.datastrato.gravitino:filesystem-hadoop3-runtime:${version}

    If you want to include Gravitino Virtual File System runtime jar in your Spark installation, make sure to add it to the ${SPARK_HOME}/jars/ folder.

  2. Configure the Hadoop configuration when submitting the job.

    Then, you can configure the Hadoop configuration in the shell command like this:

    --conf spark.hadoop.fs.AbstractFileSystem.gvfs.impl=com.datastrato.gravitino.filesystem.hadoop.Gvfs
    --conf spark.hadoop.fs.gvfs.impl=com.datastrato.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem
    --conf spark.hadoop.fs.gravitino.server.uri=${your_gravitino_server_uri}
    --conf spark.hadoop.fs.gravitino.client.metalake=${your_gravitino_metalake}
  3. Operate the fileset storage in your code.

    Finally, you can operate the fileset storage in your Spark program:

    // Scala
    val spark = SparkSession.builder()
          .appName("Gvfs Example")
          .getOrCreate()
    
    val rdd = spark.sparkContext.textFile("gvfs://fileset/test_catalog/test_schema/test_fileset_1")
    
    rdd.foreach(println)

Use GVFS with Tensorflow

In order for tensorflow to support GVFS, you need to recompile the tensorflow-io module.

  1. Add a patch and recompile tensorflow-io.

    You need to add a patch to support GVFS on tensorflow-io. Then you can follow the tutorial to recompile your code and release the tensorflow-io module.

  2. Configure the Hadoop configuration.

    You need to configure the hadoop configuration and gravitino-filesystem-hadoop3-runtime-{version}.jar, also kerberos environment according to the Use GVFS via Hadoop shell command sections.

    Then you need to set your environment as follows:

    export HADOOP_HOME=${your_hadoop_home}
    export HADOOP_CONF_DIR=${your_hadoop_conf_home}
    export PATH=$PATH:$HADOOP_HOME/libexec/hadoop-config.sh
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64/server
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
    export CLASSPATH="$(hadoop classpath --glob)"
  3. Import tensorflow-io and test.

    import tensorflow as tf
    import tensorflow_io as tfio
    
    ## read a file
    print(tf.io.read_file('gvfs://fileset/test_catalog/test_schema/test_fileset_1/test.txt'))
    
    ## list directory
    print(tf.io.gfile.listdir('gvfs://fileset/test_catalog/test_schema/test_fileset_1/'))