Skip to content

Latest commit

 

History

History
39 lines (30 loc) · 2.11 KB

README.md

File metadata and controls

39 lines (30 loc) · 2.11 KB

Pytorch Implementation of Various Point Transformers

Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Meng-Hao Guo et al.), Point Transformer (Nico Engel et al.), Point Transformer (Hengshuang Zhao et al.). This repo is a pytorch implementation for these methods and aims to compare them under a fair setting. Currently, all three methods are implemented, while tuning their hyperparameters.

Classification

Data Preparation

Download alignment ModelNet here and save in modelnet40_normal_resampled.

Run

Change which method to use in config/cls.yaml and run

python train_cls.py

Results

Using Adam with learning rate decay 0.3 for every 50 epochs, train for 200 epochs; data augmentation follows this repo. For Hengshuang and Nico, initial LR is 1e-3 (I would appreciate if someone could fine-tune these hyper-paramters); for Menghao, initial LR is 1e-4, as suggested by the author. ModelNet40 classification results (instance average) are listed below:

Model Accuracy
Hengshuang 91.7
Menghao 92.6
Nico 85.5

Part Segmentation

Data Preparation

Download alignment ShapeNet here and save in data/shapenetcore_partanno_segmentation_benchmark_v0_normal.

Run

Change which method to use in config/partseg.yaml and run

python train_partseg.py

Results

Currently only Hengshuang's method is implemented.

Miscellaneous

Some code and training settings are borrowed from https://github.com/yanx27/Pointnet_Pointnet2_pytorch. Code for PCT: Point Cloud Transformer (Meng-Hao Guo et al.) is adapted from the author's Jittor implementation https://github.com/MenghaoGuo/PCT.