diff --git a/CHANGELOG.md b/CHANGELOG.md index 34f668ed8d..e49695e54d 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -10,7 +10,7 @@ Pearl changelog #### Fixed - +- Fix the build by adding yanked aHash implementation (#302) #### Updated diff --git a/Cargo.toml b/Cargo.toml index ce5ad33b55..749ce6280f 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -27,9 +27,6 @@ lto = true codegen-units = 1 [dependencies] -# Don't update without checking for backwards compatibility!!! -ahash = "=0.7.6" - anyhow = "1.0" async-trait = "0.1" bincode = "1.3" @@ -75,3 +72,4 @@ env_logger = "0.9" chrono = "0.4" rand = "0.8" rusty-fork = "0.3.0" +hex = "0.4" diff --git a/src/filter/ahash/compatibility_test.rs b/src/filter/ahash/compatibility_test.rs new file mode 100644 index 0000000000..02725a33c6 --- /dev/null +++ b/src/filter/ahash/compatibility_test.rs @@ -0,0 +1,18 @@ +use super::AHasher; +use std::hash::Hasher; + +#[test] +fn test_hash_algorithm_compat() { + test_hash(&(0..10).collect::>(), 3604729491498336444); + test_hash(&(245..255).collect::>(), 4698010058046694585); + test_hash(&(63..73).collect::>(), 7892047681755360091); + test_hash(&(101..111).collect::>(), 15822444892006722439); +} + +fn test_hash(data: &[u8], eq_to: u64) { + let mut hasher_7 = AHasher::new_with_keys(1, 2); + hasher_7.write(data); + let hash_7 = hasher_7.finish(); + + assert_eq!(hash_7, eq_to); +} diff --git a/src/filter/ahash/convert.rs b/src/filter/ahash/convert.rs new file mode 100644 index 0000000000..5a8f6b7d53 --- /dev/null +++ b/src/filter/ahash/convert.rs @@ -0,0 +1,184 @@ +// Original work: Copyright (c) 2018 Tom Kaitchuck +// Distributed under MIT license +// Taken from aHash version 0.7.4 (commit ffa04fcb81f39755f636c75c9b7aa06533c0ae75) + +#![allow(clippy::complexity)] +pub trait Convert { + fn convert(self) -> To; +} + +macro_rules! convert { + ($a:ty, $b:ty) => { + impl Convert<$b> for $a { + #[inline(always)] + fn convert(self) -> $b { + unsafe { + let mut result: $b = core::mem::zeroed(); + core::ptr::copy_nonoverlapping( + &self as *const $a as *const u8, + &mut result as *mut $b as *mut u8, + core::mem::size_of::<$b>(), + ); + return result; + } + } + } + impl Convert<$a> for $b { + #[inline(always)] + fn convert(self) -> $a { + unsafe { + let mut result: $a = core::mem::zeroed(); + core::ptr::copy_nonoverlapping( + &self as *const $b as *const u8, + &mut result as *mut $a as *mut u8, + core::mem::size_of::<$a>(), + ); + return result; + } + } + } + }; +} + +convert!([u128; 4], [u64; 8]); +convert!([u128; 4], [u32; 16]); +convert!([u128; 4], [u16; 32]); +convert!([u128; 4], [u8; 64]); +convert!([u128; 2], [u64; 4]); +convert!([u128; 2], [u32; 8]); +convert!([u128; 2], [u16; 16]); +convert!([u128; 2], [u8; 32]); +convert!(u128, [u64; 2]); +convert!(u128, [u32; 4]); +convert!(u128, [u16; 8]); +convert!(u128, [u8; 16]); +convert!([u64; 8], [u32; 16]); +convert!([u64; 8], [u16; 32]); +convert!([u64; 8], [u8; 64]); +convert!([u64; 4], [u32; 8]); +convert!([u64; 4], [u16; 16]); +convert!([u64; 4], [u8; 32]); +convert!([u64; 2], [u32; 4]); +convert!([u64; 2], [u16; 8]); +convert!([u64; 2], [u8; 16]); +convert!([u32; 4], [u16; 8]); +convert!([u32; 4], [u8; 16]); +convert!([u16; 8], [u8; 16]); +convert!(u64, [u32; 2]); +convert!(u64, [u16; 4]); +convert!(u64, [u8; 8]); +convert!([u32; 2], [u16; 4]); +convert!([u32; 2], [u8; 8]); +convert!(u32, [u16; 2]); +convert!(u32, [u8; 4]); +convert!([u16; 2], [u8; 4]); +convert!(u16, [u8; 2]); +convert!([[u64; 4]; 2], [u8; 64]); + +convert!([f64; 2], [u8; 16]); +convert!([f32; 4], [u8; 16]); +convert!(f64, [u8; 8]); +convert!([f32; 2], [u8; 8]); +convert!(f32, [u8; 4]); + +macro_rules! as_array { + ($input:expr, $len:expr) => {{ + { + #[inline(always)] + fn as_array(slice: &[T]) -> &[T; $len] { + assert_eq!(slice.len(), $len); + unsafe { &*(slice.as_ptr() as *const [_; $len]) } + } + as_array($input) + } + }}; +} + +pub(crate) trait ReadFromSlice { + fn read_u16(&self) -> (u16, &[u8]); + fn read_u32(&self) -> (u32, &[u8]); + fn read_u64(&self) -> (u64, &[u8]); + fn read_u128(&self) -> (u128, &[u8]); + fn read_u128x2(&self) -> ([u128; 2], &[u8]); + fn read_u128x4(&self) -> ([u128; 4], &[u8]); + fn read_last_u16(&self) -> u16; + fn read_last_u32(&self) -> u32; + fn read_last_u64(&self) -> u64; + fn read_last_u128(&self) -> u128; + fn read_last_u128x2(&self) -> [u128; 2]; + fn read_last_u128x4(&self) -> [u128; 4]; +} + +impl ReadFromSlice for [u8] { + #[inline(always)] + fn read_u16(&self) -> (u16, &[u8]) { + let (value, rest) = self.split_at(2); + (as_array!(value, 2).convert(), rest) + } + + #[inline(always)] + fn read_u32(&self) -> (u32, &[u8]) { + let (value, rest) = self.split_at(4); + (as_array!(value, 4).convert(), rest) + } + + #[inline(always)] + fn read_u64(&self) -> (u64, &[u8]) { + let (value, rest) = self.split_at(8); + (as_array!(value, 8).convert(), rest) + } + + #[inline(always)] + fn read_u128(&self) -> (u128, &[u8]) { + let (value, rest) = self.split_at(16); + (as_array!(value, 16).convert(), rest) + } + + #[inline(always)] + fn read_u128x2(&self) -> ([u128; 2], &[u8]) { + let (value, rest) = self.split_at(32); + (as_array!(value, 32).convert(), rest) + } + + #[inline(always)] + fn read_u128x4(&self) -> ([u128; 4], &[u8]) { + let (value, rest) = self.split_at(64); + (as_array!(value, 64).convert(), rest) + } + + #[inline(always)] + fn read_last_u16(&self) -> u16 { + let (_, value) = self.split_at(self.len() - 2); + as_array!(value, 2).convert() + } + + #[inline(always)] + fn read_last_u32(&self) -> u32 { + let (_, value) = self.split_at(self.len() - 4); + as_array!(value, 4).convert() + } + + #[inline(always)] + fn read_last_u64(&self) -> u64 { + let (_, value) = self.split_at(self.len() - 8); + as_array!(value, 8).convert() + } + + #[inline(always)] + fn read_last_u128(&self) -> u128 { + let (_, value) = self.split_at(self.len() - 16); + as_array!(value, 16).convert() + } + + #[inline(always)] + fn read_last_u128x2(&self) -> [u128; 2] { + let (_, value) = self.split_at(self.len() - 32); + as_array!(value, 32).convert() + } + + #[inline(always)] + fn read_last_u128x4(&self) -> [u128; 4] { + let (_, value) = self.split_at(self.len() - 64); + as_array!(value, 64).convert() + } +} diff --git a/src/filter/ahash/fallback_hash.rs b/src/filter/ahash/fallback_hash.rs new file mode 100644 index 0000000000..6a819d4156 --- /dev/null +++ b/src/filter/ahash/fallback_hash.rs @@ -0,0 +1,217 @@ +// Original work: Copyright (c) 2018 Tom Kaitchuck +// Distributed under MIT license +// Taken from aHash version 0.7.4 (commit ffa04fcb81f39755f636c75c9b7aa06533c0ae75) + +use super::convert::*; +use super::operations::folded_multiply; +use super::operations::read_small; +use super::PI; +use core::hash::Hasher; + +///This constant come from Kunth's prng (Empirically it works better than those from splitmix32). +pub const MULTIPLE: u64 = 6364136223846793005; +const ROT: u32 = 23; //17 + +/// A `Hasher` for hashing an arbitrary stream of bytes. +/// +/// Instances of [`AHasher`] represent state that is updated while hashing data. +/// +/// Each method updates the internal state based on the new data provided. Once +/// all of the data has been provided, the resulting hash can be obtained by calling +/// `finish()` +/// +/// [Clone] is also provided in case you wish to calculate hashes for two different items that +/// start with the same data. +/// +#[derive(Debug, Clone)] +pub struct AHasher { + buffer: u64, + pad: u64, + extra_keys: [u64; 2], +} + +impl AHasher { + /// Creates a new hasher keyed to the provided key. + #[inline] + #[allow(dead_code)] // Is not called if non-fallback hash is used. + pub fn new_with_keys(key1: u128, key2: u128) -> AHasher { + let pi: [u128; 2] = PI.convert(); + let key1: [u64; 2] = (key1 ^ pi[0]).convert(); + let key2: [u64; 2] = (key2 ^ pi[1]).convert(); + AHasher { + buffer: key1[0], + pad: key1[1], + extra_keys: key2, + } + } + + #[allow(unused)] // False positive + pub(crate) fn test_with_keys(key1: u128, key2: u128) -> Self { + let key1: [u64; 2] = key1.convert(); + let key2: [u64; 2] = key2.convert(); + Self { + buffer: key1[0], + pad: key1[1], + extra_keys: key2, + } + } + + /// This update function has the goal of updating the buffer with a single multiply + /// FxHash does this but is vulnerable to attack. To avoid this input needs to be masked to with an + /// unpredictable value. Other hashes such as murmurhash have taken this approach but were found vulnerable + /// to attack. The attack was based on the idea of reversing the pre-mixing (Which is necessarily + /// reversible otherwise bits would be lost) then placing a difference in the highest bit before the + /// multiply used to mix the data. Because a multiply can never affect the bits to the right of it, a + /// subsequent update that also differed in this bit could result in a predictable collision. + /// + /// This version avoids this vulnerability while still only using a single multiply. It takes advantage + /// of the fact that when a 64 bit multiply is performed the upper 64 bits are usually computed and thrown + /// away. Instead it creates two 128 bit values where the upper 64 bits are zeros and multiplies them. + /// (The compiler is smart enough to turn this into a 64 bit multiplication in the assembly) + /// Then the upper bits are xored with the lower bits to produce a single 64 bit result. + /// + /// To understand why this is a good scrambling function it helps to understand multiply-with-carry PRNGs: + /// https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator + /// If the multiple is chosen well, this creates a long period, decent quality PRNG. + /// Notice that this function is equivalent to this except the `buffer`/`state` is being xored with each + /// new block of data. In the event that data is all zeros, it is exactly equivalent to a MWC PRNG. + /// + /// This is impervious to attack because every bit buffer at the end is dependent on every bit in + /// `new_data ^ buffer`. For example suppose two inputs differed in only the 5th bit. Then when the + /// multiplication is performed the `result` will differ in bits 5-69. More specifically it will differ by + /// 2^5 * MULTIPLE. However in the next step bits 65-128 are turned into a separate 64 bit value. So the + /// differing bits will be in the lower 6 bits of this value. The two intermediate values that differ in + /// bits 5-63 and in bits 0-5 respectively get added together. Producing an output that differs in every + /// bit. The addition carries in the multiplication and at the end additionally mean that the even if an + /// attacker somehow knew part of (but not all) the contents of the buffer before hand, + /// they would not be able to predict any of the bits in the buffer at the end. + #[inline(always)] + fn update(&mut self, new_data: u64) { + self.buffer = folded_multiply(new_data ^ self.buffer, MULTIPLE); + } + + /// Similar to the above this function performs an update using a "folded multiply". + /// However it takes in 128 bits of data instead of 64. Both halves must be masked. + /// + /// This makes it impossible for an attacker to place a single bit difference between + /// two blocks so as to cancel each other. + /// + /// However this is not sufficient. to prevent (a,b) from hashing the same as (b,a) the buffer itself must + /// be updated between calls in a way that does not commute. To achieve this XOR and Rotate are used. + /// Add followed by xor is not the same as xor followed by add, and rotate ensures that the same out bits + /// can't be changed by the same set of input bits. To cancel this sequence with subsequent input would require + /// knowing the keys. + #[inline(always)] + fn large_update(&mut self, new_data: u128) { + let block: [u64; 2] = new_data.convert(); + let combined = + folded_multiply(block[0] ^ self.extra_keys[0], block[1] ^ self.extra_keys[1]); + self.buffer = (self.buffer.wrapping_add(self.pad) ^ combined).rotate_left(ROT); + } +} + +/// Provides [Hasher] methods to hash all of the primitive types. +/// +/// [Hasher]: core::hash::Hasher +impl Hasher for AHasher { + #[inline] + fn write_u8(&mut self, i: u8) { + self.update(i as u64); + } + + #[inline] + fn write_u16(&mut self, i: u16) { + self.update(i as u64); + } + + #[inline] + fn write_u32(&mut self, i: u32) { + self.update(i as u64); + } + + #[inline] + fn write_u64(&mut self, i: u64) { + self.update(i); + } + + #[inline] + fn write_u128(&mut self, i: u128) { + self.large_update(i); + } + + #[inline] + #[cfg(any( + target_pointer_width = "64", + target_pointer_width = "32", + target_pointer_width = "16" + ))] + fn write_usize(&mut self, i: usize) { + self.write_u64(i as u64); + } + + #[inline] + #[cfg(target_pointer_width = "128")] + fn write_usize(&mut self, i: usize) { + self.write_u128(i as u128); + } + + #[inline] + #[allow(clippy::collapsible_if)] + fn write(&mut self, input: &[u8]) { + let mut data = input; + let length = data.len() as u64; + //Needs to be an add rather than an xor because otherwise it could be canceled with carefully formed input. + self.buffer = self.buffer.wrapping_add(length).wrapping_mul(MULTIPLE); + //A 'binary search' on sizes reduces the number of comparisons. + if data.len() > 8 { + if data.len() > 16 { + let tail = data.read_last_u128(); + self.large_update(tail); + while data.len() > 16 { + let (block, rest) = data.read_u128(); + self.large_update(block); + data = rest; + } + } else { + self.large_update([data.read_u64().0, data.read_last_u64()].convert()); + } + } else { + let value = read_small(data); + self.large_update(value.convert()); + } + } + + #[inline] + fn finish(&self) -> u64 { + let rot = (self.buffer & 63) as u32; + folded_multiply(self.buffer, self.pad).rotate_left(rot) + } +} + +#[cfg(test)] +mod tests { + use super::super::convert::Convert; + use super::super::fallback_hash::*; + + #[test] + fn test_hash() { + let mut hasher = AHasher::new_with_keys(0, 0); + let value: u64 = 1 << 32; + hasher.update(value); + let result = hasher.buffer; + let mut hasher = AHasher::new_with_keys(0, 0); + let value2: u64 = 1; + hasher.update(value2); + let result2 = hasher.buffer; + let result: [u8; 8] = result.convert(); + let result2: [u8; 8] = result2.convert(); + assert_ne!(hex::encode(result), hex::encode(result2)); + } + + #[test] + fn test_conversion() { + let input: &[u8] = "dddddddd".as_bytes(); + let bytes: u64 = as_array!(input, 8).convert(); + assert_eq!(bytes, 0x6464646464646464); + } +} diff --git a/src/filter/ahash/mod.rs b/src/filter/ahash/mod.rs new file mode 100644 index 0000000000..9a941c688e --- /dev/null +++ b/src/filter/ahash/mod.rs @@ -0,0 +1,73 @@ +// Original work: Copyright (c) 2018 Tom Kaitchuck +// Distributed under MIT license +// Taken from aHash version 0.7.4 (commit ffa04fcb81f39755f636c75c9b7aa06533c0ae75) + +//! AHash is a hashing algorithm is intended to be a high performance, (hardware specific), keyed hash function. +//! This can be seen as a DOS resistant alternative to `FxHash`, or a fast equivalent to `SipHash`. +//! It provides a high speed hash algorithm, but where the result is not predictable without knowing a Key. +//! This allows it to be used in a `HashMap` without allowing for the possibility that an malicious user can +//! induce a collision. +//! +//! # How aHash works +//! +//! aHash uses the hardware AES instruction on x86 processors to provide a keyed hash function. +//! aHash is not a cryptographically secure hash. +#![deny(clippy::correctness, clippy::complexity, clippy::perf)] +#![allow(clippy::pedantic, clippy::cast_lossless, clippy::unreadable_literal)] + +#[macro_use] +mod convert; +#[cfg(test)] +mod compatibility_test; +mod fallback_hash; +mod operations; + +#[doc(hidden)] +pub const PI: [u64; 4] = [ + 0x243f_6a88_85a3_08d3, + 0x1319_8a2e_0370_7344, + 0xa409_3822_299f_31d0, + 0x082e_fa98_ec4e_6c89, +]; + +pub use self::fallback_hash::AHasher; + +#[cfg(feature = "std")] +#[cfg(test)] +mod test { + use super::convert::Convert; + use super::*; + use core::hash::Hasher; + use std::hash::Hash; + + #[test] + fn test_conversion() { + let input: &[u8] = b"dddddddd"; + let bytes: u64 = as_array!(input, 8).convert(); + assert_eq!(bytes, 0x6464646464646464); + } + + #[test] + fn test_non_zero() { + let mut hasher1 = AHasher::new_with_keys(0, 0); + let mut hasher2 = AHasher::new_with_keys(0, 0); + "foo".hash(&mut hasher1); + "bar".hash(&mut hasher2); + assert_ne!(hasher1.finish(), 0); + assert_ne!(hasher2.finish(), 0); + assert_ne!(hasher1.finish(), hasher2.finish()); + + let mut hasher1 = AHasher::new_with_keys(0, 0); + let mut hasher2 = AHasher::new_with_keys(0, 0); + 3_u64.hash(&mut hasher1); + 4_u64.hash(&mut hasher2); + assert_ne!(hasher1.finish(), 0); + assert_ne!(hasher2.finish(), 0); + assert_ne!(hasher1.finish(), hasher2.finish()); + } + + #[test] + fn test_ahasher_construction() { + let _ = AHasher::new_with_keys(1234, 5678); + } +} diff --git a/src/filter/ahash/operations.rs b/src/filter/ahash/operations.rs new file mode 100644 index 0000000000..c61ec18b16 --- /dev/null +++ b/src/filter/ahash/operations.rs @@ -0,0 +1,323 @@ +// Original work: Copyright (c) 2018 Tom Kaitchuck +// Distributed under MIT license +// Taken from aHash version 0.7.4 (commit ffa04fcb81f39755f636c75c9b7aa06533c0ae75) + +use super::convert::*; + +/// This is a constant with a lot of special properties found by automated search. +/// See the unit tests below. (Below are alternative values) +#[cfg(all(target_feature = "ssse3", not(miri)))] +const SHUFFLE_MASK: u128 = 0x020a0700_0c01030e_050f0d08_06090b04_u128; +//const SHUFFLE_MASK: u128 = 0x000d0702_0a040301_05080f0c_0e0b0609_u128; +//const SHUFFLE_MASK: u128 = 0x040A0700_030E0106_0D050F08_020B0C09_u128; + +#[inline(always)] +pub(crate) const fn folded_multiply(s: u64, by: u64) -> u64 { + let result = (s as u128).wrapping_mul(by as u128); + ((result & 0xffff_ffff_ffff_ffff) as u64) ^ ((result >> 64) as u64) +} + +/// Given a small (less than 8 byte slice) returns the same data stored in two u32s. +/// (order of and non-duplication of bytes is NOT guaranteed) +#[inline(always)] +pub(crate) fn read_small(data: &[u8]) -> [u64; 2] { + debug_assert!(data.len() <= 8); + if data.len() >= 2 { + if data.len() >= 4 { + //len 4-8 + [data.read_u32().0 as u64, data.read_last_u32() as u64] + } else { + //len 2-3 + [data.read_u16().0 as u64, data[data.len() - 1] as u64] + } + } else { + if data.len() > 0 { + [data[0] as u64, data[0] as u64] + } else { + [0, 0] + } + } +} + +#[inline(always)] +pub(crate) fn shuffle(a: u128) -> u128 { + #[cfg(all(target_feature = "ssse3", not(miri)))] + { + #[cfg(target_arch = "x86")] + use core::arch::x86::*; + #[cfg(target_arch = "x86_64")] + use core::arch::x86_64::*; + use core::mem::transmute; + unsafe { transmute(_mm_shuffle_epi8(transmute(a), transmute(SHUFFLE_MASK))) } + } + #[cfg(not(all(target_feature = "ssse3", not(miri))))] + { + a.swap_bytes() + } +} + +#[allow(unused)] //not used by fallback +#[inline(always)] +pub(crate) fn add_and_shuffle(a: u128, b: u128) -> u128 { + let sum = add_by_64s(a.convert(), b.convert()); + shuffle(sum.convert()) +} + +#[allow(unused)] //not used by fallbac +#[inline(always)] +pub(crate) fn shuffle_and_add(base: u128, to_add: u128) -> u128 { + let shuffled: [u64; 2] = shuffle(base).convert(); + add_by_64s(shuffled, to_add.convert()).convert() +} + +#[cfg(all( + any(target_arch = "x86", target_arch = "x86_64"), + target_feature = "sse2", + not(miri) +))] +#[inline(always)] +pub(crate) fn add_by_64s(a: [u64; 2], b: [u64; 2]) -> [u64; 2] { + use core::mem::transmute; + unsafe { + #[cfg(target_arch = "x86")] + use core::arch::x86::*; + #[cfg(target_arch = "x86_64")] + use core::arch::x86_64::*; + transmute(_mm_add_epi64(transmute(a), transmute(b))) + } +} + +#[cfg(not(all( + any(target_arch = "x86", target_arch = "x86_64"), + target_feature = "sse2", + not(miri) +)))] +#[inline(always)] +pub(crate) fn add_by_64s(a: [u64; 2], b: [u64; 2]) -> [u64; 2] { + [a[0].wrapping_add(b[0]), a[1].wrapping_add(b[1])] +} + +#[cfg(all( + any(target_arch = "x86", target_arch = "x86_64"), + target_feature = "aes", + not(miri) +))] +#[allow(unused)] +#[inline(always)] +pub(crate) fn aesenc(value: u128, xor: u128) -> u128 { + #[cfg(target_arch = "x86")] + use core::arch::x86::*; + #[cfg(target_arch = "x86_64")] + use core::arch::x86_64::*; + use core::mem::transmute; + unsafe { + let value = transmute(value); + transmute(_mm_aesenc_si128(value, transmute(xor))) + } +} + +#[cfg(all( + any(target_arch = "x86", target_arch = "x86_64"), + target_feature = "aes", + not(miri) +))] +#[allow(unused)] +#[inline(always)] +pub(crate) fn aesdec(value: u128, xor: u128) -> u128 { + #[cfg(target_arch = "x86")] + use core::arch::x86::*; + #[cfg(target_arch = "x86_64")] + use core::arch::x86_64::*; + use core::mem::transmute; + unsafe { + let value = transmute(value); + transmute(_mm_aesdec_si128(value, transmute(xor))) + } +} + +#[cfg(test)] +mod test { + use super::super::convert::Convert; + use super::*; + + // This is code to search for the shuffle constant + // + //thread_local! { static MASK: Cell = Cell::new(0); } + // + // fn shuffle(a: u128) -> u128 { + // use std::intrinsics::transmute; + // #[cfg(target_arch = "x86")] + // use core::arch::x86::*; + // #[cfg(target_arch = "x86_64")] + // use core::arch::x86_64::*; + // MASK.with(|mask| { + // unsafe { transmute(_mm_shuffle_epi8(transmute(a), transmute(mask.get()))) } + // }) + // } + // + // #[test] + // fn find_shuffle() { + // use rand::prelude::*; + // use SliceRandom; + // use std::panic; + // use std::io::Write; + // + // let mut value: [u8; 16] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ,13, 14, 15]; + // let mut rand = thread_rng(); + // let mut successful_list = HashMap::new(); + // for _attempt in 0..10000000 { + // rand.shuffle(&mut value); + // let test_val = value.convert(); + // MASK.with(|mask| { + // mask.set(test_val); + // }); + // if let Ok(successful) = panic::catch_unwind(|| { + // test_shuffle_does_not_collide_with_aes(); + // test_shuffle_moves_high_bits(); + // test_shuffle_moves_every_value(); + // //test_shuffle_does_not_loop(); + // value + // }) { + // let successful: u128 = successful.convert(); + // successful_list.insert(successful, iters_before_loop()); + // } + // } + // let write_file = File::create("/tmp/output").unwrap(); + // let mut writer = BufWriter::new(&write_file); + // + // for success in successful_list { + // writeln!(writer, "Found successful: {:x?} - {:?}", success.0, success.1); + // } + // } + // + // fn iters_before_loop() -> u32 { + // let numbered = 0x00112233_44556677_8899AABB_CCDDEEFF; + // let mut shuffled = shuffle(numbered); + // let mut count = 0; + // loop { + // // println!("{:>16x}", shuffled); + // if numbered == shuffled { + // break; + // } + // count += 1; + // shuffled = shuffle(shuffled); + // } + // count + // } + + #[cfg(all( + any(target_arch = "x86", target_arch = "x86_64"), + target_feature = "ssse3", + target_feature = "aes", + not(miri) + ))] + #[test] + fn test_shuffle_does_not_collide_with_aes() { + let mut value: [u8; 16] = [0; 16]; + let zero_mask_enc = aesenc(0, 0); + let zero_mask_dec = aesdec(0, 0); + for index in 0..16 { + value[index] = 1; + let excluded_positions_enc: [u8; 16] = aesenc(value.convert(), zero_mask_enc).convert(); + let excluded_positions_dec: [u8; 16] = aesdec(value.convert(), zero_mask_dec).convert(); + let actual_location: [u8; 16] = shuffle(value.convert()).convert(); + for pos in 0..16 { + if actual_location[pos] != 0 { + assert_eq!( + 0, excluded_positions_enc[pos], + "Forward Overlap between {:?} and {:?} at {}", + excluded_positions_enc, actual_location, index + ); + assert_eq!( + 0, excluded_positions_dec[pos], + "Reverse Overlap between {:?} and {:?} at {}", + excluded_positions_dec, actual_location, index + ); + } + } + value[index] = 0; + } + } + + #[test] + fn test_shuffle_contains_each_value() { + let value: [u8; 16] = 0x00010203_04050607_08090A0B_0C0D0E0F_u128.convert(); + let shuffled: [u8; 16] = shuffle(value.convert()).convert(); + for index in 0..16_u8 { + assert!(shuffled.contains(&index), "Value is missing {}", index); + } + } + + #[test] + fn test_shuffle_moves_every_value() { + let mut value: [u8; 16] = [0; 16]; + for index in 0..16 { + value[index] = 1; + let shuffled: [u8; 16] = shuffle(value.convert()).convert(); + assert_eq!(0, shuffled[index], "Value is not moved {}", index); + value[index] = 0; + } + } + + #[test] + fn test_shuffle_moves_high_bits() { + assert!( + shuffle(1) > (1_u128 << 80), + "Low bits must be moved to other half {:?} -> {:?}", + 0, + shuffle(1) + ); + + assert!( + shuffle(1_u128 << 58) >= (1_u128 << 64), + "High bits must be moved to other half {:?} -> {:?}", + 7, + shuffle(1_u128 << 58) + ); + assert!( + shuffle(1_u128 << 58) < (1_u128 << 112), + "High bits must not remain high {:?} -> {:?}", + 7, + shuffle(1_u128 << 58) + ); + assert!( + shuffle(1_u128 << 64) < (1_u128 << 64), + "Low bits must be moved to other half {:?} -> {:?}", + 8, + shuffle(1_u128 << 64) + ); + assert!( + shuffle(1_u128 << 64) >= (1_u128 << 16), + "Low bits must not remain low {:?} -> {:?}", + 8, + shuffle(1_u128 << 64) + ); + + assert!( + shuffle(1_u128 << 120) < (1_u128 << 50), + "High bits must be moved to low half {:?} -> {:?}", + 15, + shuffle(1_u128 << 120) + ); + } + + #[cfg(all( + any(target_arch = "x86", target_arch = "x86_64"), + target_feature = "ssse3", + not(miri) + ))] + #[test] + fn test_shuffle_does_not_loop() { + let numbered = 0x00112233_44556677_8899AABB_CCDDEEFF; + let mut shuffled = shuffle(numbered); + for count in 0..100 { + // println!("{:>16x}", shuffled); + assert_ne!( + numbered, shuffled, + "Equal after {} vs {:x}", + count, shuffled + ); + shuffled = shuffle(shuffled); + } + } +} diff --git a/src/filter/bloom.rs b/src/filter/bloom.rs index f00d06adf4..e31c994a6e 100644 --- a/src/filter/bloom.rs +++ b/src/filter/bloom.rs @@ -1,3 +1,22 @@ +//! aHash version 0.7.4 (commit ffa04fcb81f39755f636c75c9b7aa06533c0ae75) is used for `Bloom` +//! filter. Several key tests were performed in order to determine the best hash function for this +//! scenario. Results for aHash were compared with Wyhash as the second best after aHash. +//! +//! Results are the following: +//! 1. [SMHasher](https://github.com/rurban/smhasher) +//! a. AHash: All tests passed +//! b. Wyhash: PerlinNoise test failed +//! 2. [SMHasher3](https://gitlab.com/fwojcik/smhasher3) +//! a. AHash: 118 / 188 passed +//! b. Wyhash: 160 / 188 passed +//! 3. Mean Bloom filter's false-positive amount of 100k keys in 1M-sized bitvec: +//! a. AHash: 29574.6 +//! b. Wyhash: 29546 +//! 4. Average Speed: +//! a. AHash: 23.20 cycles/hash +//! b. Wyhash: 22.27 cycles/hash +//! + use super::*; use ahash::AHasher; use atomic_bitvec::*; diff --git a/src/filter/mod.rs b/src/filter/mod.rs index 2dde98774d..2686aae2b8 100644 --- a/src/filter/mod.rs +++ b/src/filter/mod.rs @@ -1,3 +1,5 @@ +/// aHash implementation +mod ahash; /// Bloom filter pub mod bloom; mod combined; diff --git a/tests/tests.rs b/tests/tests.rs index be72a4c73e..4176bde0e7 100644 --- a/tests/tests.rs +++ b/tests/tests.rs @@ -11,7 +11,6 @@ use pearl::{BloomProvider, Builder, Meta, ReadResult, Storage, Key, BlobRecordTi use rand::{seq::SliceRandom, Rng, SeedableRng}; use std::{ fs, - hash::Hasher, time::{Duration, Instant}, sync::Arc, collections::HashMap @@ -23,22 +22,6 @@ mod common; use common::{KeyTest, MAX_DEFER_TIME, MIN_DEFER_TIME}; -#[test] -fn test_hash_algorithm_compat() { - test_hash(&(0..10).collect::>(), 3604729491498336444); - test_hash(&(245..255).collect::>(), 4698010058046694585); - test_hash(&(63..73).collect::>(), 7892047681755360091); - test_hash(&(101..111).collect::>(), 15822444892006722439); -} - -fn test_hash(data: &[u8], eq_to: u64) { - let mut hasher_7 = ahash::AHasher::new_with_keys(1, 2); - hasher_7.write(data); - let hash_7 = hasher_7.finish(); - - assert_eq!(hash_7, eq_to); -} - #[tokio::test] async fn test_storage_init_new() { let path = common::init("new");