diff --git a/docs/_summary.md b/docs/_summary.md index b5746ff6de84..3abe48556f2a 100644 --- a/docs/_summary.md +++ b/docs/_summary.md @@ -107,6 +107,7 @@ * [Audio](feature_audio.md) * [Bluetooth](feature_bluetooth.md) * [Bootmagic Lite](feature_bootmagic.md) + * [Converters](feature_converters.md) * [Custom Matrix](custom_matrix.md) * [Digitizer](feature_digitizer.md) * [DIP Switch](feature_dip_switch.md) @@ -115,7 +116,6 @@ * [Joystick](feature_joystick.md) * [LED Indicators](feature_led_indicators.md) * [MIDI](feature_midi.md) - * [Proton C Conversion](proton_c_conversion.md) * [PS/2 Mouse](feature_ps2_mouse.md) * [Split Keyboard](feature_split_keyboard.md) * [Stenography](feature_stenography.md) @@ -167,6 +167,7 @@ * [Selecting an MCU](platformdev_selecting_arm_mcu.md) * [Early initialization](platformdev_chibios_earlyinit.md) * [Raspberry Pi RP2040](platformdev_rp2040.md) + * [Proton C](platformdev_proton_c.md) * QMK Reference * [Contributing to QMK](contributing.md) diff --git a/docs/feature_converters.md b/docs/feature_converters.md new file mode 100644 index 000000000000..484591257596 --- /dev/null +++ b/docs/feature_converters.md @@ -0,0 +1,95 @@ +# Converters + +Since many drop-in replacement controllers now exist, we've done our best to make them easy to use in existing designs. + +This page documents the handy automated process for converting keyboards. + +### Supported Converters + +Currently the following converters are available: + +| From | To | +|------------|-------------------| +| `promicro` | `proton_c` | +| `promicro` | `kb2040` | +| `promicro` | `promicro_rp2040` | + +See below for more in depth information on each converter. + +## Overview + +Each converter category is broken down by its declared `pin compatibility`. +This ensures that only valid combinations are attempted. + +You can generate the firmware by appending `-e CONVERT_TO=` to your compile/flash command. For example: + +```sh +qmk flash -c -kb keebio/bdn9/rev1 -km default -e CONVERT_TO=proton_c +``` + +You can also add the same `CONVERT_TO=` to your keymap's `rules.mk`, which will accomplish the same thing. + +?> If you get errors about `PORTB/DDRB`, etc not being defined, so you'll need to convert the keyboard's code to use the [GPIO Controls](gpio_control.md) that will work for both ARM and AVR. This shouldn't affect the AVR builds at all. + +### Conditional Configuration + +Once a converter is enabled, it exposes the `CONVERT_TO_` flag that you can use in your code with `#ifdef`s, For example: + +```c +#ifdef CONVERT_TO_PROTON_C + // Proton C code +#else + // Pro Micro code +#endif +``` + +## Pro Micro + +If a board currently supported in QMK uses a [Pro Micro](https://www.sparkfun.com/products/12640) (or compatible board), the supported alternative controllers are: + +| Device | Target | +|------------------------------------------------------------------------|-------------------| +| [Proton C](https://qmk.fm/proton-c/) | `proton_c` | +| [Adafruit KB2040](https://learn.adafruit.com/adafruit-kb2040) | `kb2040` | +| [SparkFun Pro Micro - RP2040](https://www.sparkfun.com/products/18288) | `promicro_rp2040` | + +Converter summary: + +| Target | Argument | `rules.mk` | Condition | +|-------------------|---------------------------------|------------------------------|-------------------------------------| +| `proton_c` | `-e CONVERT_TO=proton_c` | `CONVERT_TO=proton_c` | `#ifdef CONVERT_TO_PROTON_C` | +| `kb2040` | `-e CONVERT_TO=kb2040` | `CONVERT_TO=kb2040` | `#ifdef CONVERT_TO_KB2040` | +| `promicro_rp2040` | `-e CONVERT_TO=promicro_rp2040` | `CONVERT_TO=promicro_rp2040` | `#ifdef CONVERT_TO_PROMICRO_RP2040` | + +### Proton C :id=proton_c + +The Proton C only has one on-board LED (C13), and by default, the TXLED (D5) is mapped to it. If you want the RXLED (B0) mapped to it instead, add this like to your `config.h`: + +```c +#define CONVERT_TO_PROTON_C_RXLED +``` + +The following defaults are based on what has been implemented for STM32 boards. + +| Feature | Notes | +|----------------------------------------------|------------------------------------------------------------------------------------------------------------------| +| [Audio](feature_audio.md) | Enabled | +| [RGB Lighting](feature_rgblight.md) | Disabled | +| [Backlight](feature_backlight.md) | Forces [task driven PWM](feature_backlight.md#software-pwm-driver) until ARM can provide automatic configuration | +| USB Host (e.g. USB-USB converter) | Not supported (USB host code is AVR specific and is not currently supported on ARM) | +| [Split keyboards](feature_split_keyboard.md) | Partial - heavily dependent on enabled features | + +### Adafruit KB2040 :id=kb2040 + +The following defaults are based on what has been implemented for [RP2040](platformdev_rp2040.md) boards. + +| Feature | Notes | +|----------------------------------------------|------------------------------------------------------------------------------------------------------------------| +| [RGB Lighting](feature_rgblight.md) | Enabled via `PIO` vendor driver | +| [Backlight](feature_backlight.md) | Forces [task driven PWM](feature_backlight.md#software-pwm-driver) until ARM can provide automatic configuration | +| USB Host (e.g. USB-USB converter) | Not supported (USB host code is AVR specific and is not currently supported on ARM) | +| [Split keyboards](feature_split_keyboard.md) | Partial via `PIO` vendor driver - heavily dependent on enabled features | + +### SparkFun Pro Micro - RP2040 :id=promicro_rp2040 + +Currently identical to [Adafruit KB2040](#kb2040). diff --git a/docs/platformdev_proton_c.md b/docs/platformdev_proton_c.md new file mode 100644 index 000000000000..3afec893fa6d --- /dev/null +++ b/docs/platformdev_proton_c.md @@ -0,0 +1,77 @@ +# Proton C + +The Proton C is an Arm STM32F303xC based drop-in replacement for the Pro Micro. + +Proton C + +#### Features + +* Through-hole mounted USB-C Port +* 32-bit 72MHz Cortex-M4 processor (STM32F303CCT6) +* I2C, SPI, PWM, DMA, DAC, USART, I2S +* 23x 3.3V I/O Ports +* 1x 5V output for WS2812 LED chains +* 256kB flash +* 40kB RAM +* AST1109MLTRQ speaker footprint +* Reset button + +## Warnings + +Some of the PCBs compatible with Pro Micro have VCC (3.3V) and RAW (5V) pins connected (shorted) on the pcb. Using the Proton C will short 5V power from USB and regulated 3.3V which is connected directly to the MCU. Shorting those pins may damage the MCU on the Proton C. + +So far, it appears that this is only an issue on the Gherkin PCBs, but other PCBs may be affected in this way. + +In this case, you may want to not hook up the RAW pin at all. + +## Manual Conversion + +To use the Proton C natively, without having to specify `CONVERT_TO=proton_c`, you need to change the `MCU` line in `rules.mk`: + +``` +MCU = STM32F303 +BOARD = QMK_PROTON_C +``` + +Remove these variables if they exist: + +* `BOOTLOADER` +* `EXTRA_FLAGS` + +Finally convert all pin assignments in `config.h` to the stm32 equivalents. + +| Pro Micro Left | Proton C Left | | Proton C Right | Pro Micro Right | +|-----------|----------|-|----------|-----------| +| `D3` | `A9` | | 5v | RAW (5v) | +| `D2` | `A10` | | GND | GND | +| GND | GND | | FLASH | RESET | +| GND | GND | | 3.3v | VCC 1 | +| `D1` | `B7` | | `A2` | `F4` | +| `D0` | `B6` | | `A1` | `F5` | +| `D4` | `B5` | | `A0` | `F6` | +| `C6` | `B4` | | `B8` | `F7` | +| `D7` | `B3` | | `B13` | `B1` | +| `E6` | `B2` | | `B14` | `B3` | +| `B4` | `B1` | | `B15` | `B2` | +| `B5` | `B0` | | `B9` | `B6` | +| `B0` (RX LED) | `C13` 2 | | `C13` 2 | `D5` (TX LED) | + +You can also make use of several new pins on the extended portion of the Proton C: + +| Left | | Right | +|------|-|-------| +| `A4`3 | | `B10` | +| `A5`4 | | `B11` | +| `A6` | | `B12` | +| `A7` | | `A14`5 (SWCLK) | +| `A8` | | `A13`5 (SWDIO) | +| `A15` | | RESET6 | + +Notes: + +1. On a Pro Micro VCC can be 3.3v or 5v. +2. A Proton C only has one onboard LED, not two like a Pro Micro. The Pro Micro has an RX LED on `D5` and a TX LED on `B0`. +3. `A4` is shared with the speaker. +4. `A5` is shared with the speaker. +5. `A13` and `A14` are used for hardware debugging (SWD). You can also use them for GPIO, but should use them last. +6. Short RESET to 3.3v (pull high) to reboot the MCU. This does not enter bootloader mode like a Pro Micro, it only resets the MCU. diff --git a/docs/proton_c_conversion.md b/docs/proton_c_conversion.md deleted file mode 100644 index 1e1b1e806d3e..000000000000 --- a/docs/proton_c_conversion.md +++ /dev/null @@ -1,91 +0,0 @@ -# Converting a board to use the Proton C - -Since the Proton C is a drop-in replacement for a Pro Micro we've made it easy to use. This page documents a handy automated process for converting keyboards, as well as documenting the manual process if you'd like to make use of Proton C features that aren't available on Pro Micros. - -## Automatic Conversion - -If a board currently supported in QMK uses a Pro Micro (or compatible board) and you want to use the Proton C, you can generate the firmware by appending `CONVERT_TO_PROTON_C=yes` (or `CTPC=yes`) to your make argument, like this: - - make 40percentclub/mf68:default CTPC=yes - -You can add the same argument to your keymap's `rules.mk`, which will accomplish the same thing. - -This exposes the `CONVERT_TO_PROTON_C` flag that you can use in your code with `#ifdef`s, like this: - -```c -#ifdef CONVERT_TO_PROTON_C - // Proton C code -#else - // Pro Micro code -#endif -``` - -If you get errors about `PORTB/DDRB`, etc not being defined, so you'll need to convert the keyboard's code to use the [GPIO Controls](gpio_control.md) that will work for both ARM and AVR. This shouldn't affect the AVR builds at all. - -The Proton C only has one on-board LED (C13), and by default, the TXLED (D5) is mapped to it. If you want the RXLED (B0) mapped to it instead, add this like to your `config.h`: - - #define CONVERT_TO_PROTON_C_RXLED - -## Feature Conversion - -These are defaults based on what has been implemented for ARM boards. - -| Feature | Notes | -|-------------------------------------|------------------------------------------------------------------------------------------------------------------| -| [Audio](feature_audio.md) | Enabled | -| [RGB Lighting](feature_rgblight.md) | Disabled | -| [Backlight](feature_backlight.md) | Forces [task driven PWM](feature_backlight.md#software-pwm-driver) until ARM can provide automatic configuration | -| USB Host (e.g. USB-USB converter) | Not supported (USB host code is AVR specific and is not currently supported on ARM) | -| [Split keyboards](feature_split_keyboard.md) | Partial - heavily dependent on enabled features | - -## Manual Conversion - -To use the Proton C natively, without having to specify `CTPC=yes`, you need to change the `MCU` line in `rules.mk`: - -``` -MCU = STM32F303 -BOARD = QMK_PROTON_C -``` - -Remove these variables if they exist: - -* `BOOTLOADER` -* `EXTRA_FLAGS` - -Finally convert all pin assignments in `config.h` to the stm32 equivalents. - -| Pro Micro Left | Proton C Left | | Proton C Right | Pro Micro Right | -|-----------|----------|-|----------|-----------| -| `D3` | `A9` | | 5v | RAW (5v) | -| `D2` | `A10` | | GND | GND | -| GND | GND | | FLASH | RESET | -| GND | GND | | 3.3v | VCC 1 | -| `D1` | `B7` | | `A2` | `F4` | -| `D0` | `B6` | | `A1` | `F5` | -| `D4` | `B5` | | `A0` | `F6` | -| `C6` | `B4` | | `B8` | `F7` | -| `D7` | `B3` | | `B13` | `B1` | -| `E6` | `B2` | | `B14` | `B3` | -| `B4` | `B1` | | `B15` | `B2` | -| `B5` | `B0` | | `B9` | `B6` | -| `B0` (RX LED) | `C13` 2 | | `C13` 2 | `D5` (TX LED) | - -You can also make use of several new pins on the extended portion of the Proton C: - -| Left | | Right | -|------|-|-------| -| `A4`3 | | `B10` | -| `A5`4 | | `B11` | -| `A6` | | `B12` | -| `A7` | | `A14`5 (SWCLK) | -| `A8` | | `A13`5 (SWDIO) | -| `A15` | | RESET6 | - -Notes: - -1. On a Pro Micro VCC can be 3.3v or 5v. -2. A Proton C only has one onboard LED, not two like a Pro Micro. The Pro Micro has an RX LED on `D5` and a TX LED on `B0`. -3. `A4` is shared with the speaker. -4. `A5` is shared with the speaker. -5. `A13` and `A14` are used for hardware debugging (SWD). You can also use them for GPIO, but should use them last. -6. Short RESET to 3.3v (pull high) to reboot the MCU. This does not enter bootloader mode like a Pro Micro, it only resets the MCU.