-
Notifications
You must be signed in to change notification settings - Fork 13
/
finetune_motion.py
228 lines (181 loc) · 8.33 KB
/
finetune_motion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import time
import lightning as L
import numpy as np
import torch
import clip
from lit_llama.lora import mark_only_lora_as_trainable, lora, lora_state_dict
from lit_llama.model import LLaMA, LLaMAConfig
from lit_llama.tokenizer import Tokenizer
from dataloader.eval_loader import DATALoader
from utils.evaluate import evaluation
from utils.word_vectorizer import WordVectorizer
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import models.vqvae as vqvae
from options import option
import utils.utils_model as utils_model
from torch.utils.tensorboard import SummaryWriter
import json
args = option.get_args_parser()
gradient_accumulation_steps = args.batch_size // args.micro_batch_size
max_iters = 50000 * 3 // args.micro_batch_size
def main():
fabric = L.Fabric(accelerator="cuda", devices=1, precision="bf16-mixed")
fabric.launch()
fabric.seed_everything(1337 + fabric.global_rank)
if fabric.global_rank == 0:
os.makedirs(args.out_dir, exist_ok=True)
train_data, val_data = load_datasets()
w_vectorizer = WordVectorizer('./glove', 'our_vab')
val_loader = DATALoader(args.dataname, 'val', 32, w_vectorizer, unit_length=2**args.down_t)
if args.dataname == 'kit' :
dataset_opt_path = './checkpoints/kit/Comp_v6_KLD005/opt.txt'
args.nb_joints = 21
else :
dataset_opt_path = './checkpoints/t2m/Comp_v6_KLD005/opt.txt'
args.nb_joints = 22
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
print ('loading checkpoint from {}'.format(args.vqvae_pth))
ckpt = torch.load(args.vqvae_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
net.cuda()
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False) # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
config = LLaMAConfig.from_name(args.pretrained_llama)
config.block_size = args.block_size
checkpoint = torch.load(f"./checkpoints/lit-llama/{args.pretrained_llama}/lit-llama.pth")
tokenizer = Tokenizer("./checkpoints/lit-llama/tokenizer.model")
with fabric.device, lora(r=args.lora_r, alpha=args.lora_alpha, dropout=args.lora_dropout, enabled=True):
torch.set_default_tensor_type(torch.HalfTensor)
model = LLaMA(config).bfloat16()
torch.set_default_tensor_type(torch.FloatTensor)
# strict=False because missing keys due to LoRA weights not contained in checkpoint state
model.load_state_dict(checkpoint, strict=False)
if args.resume_pth:
checkpoint = torch.load(args.resume_pth)
model.load_state_dict(checkpoint, strict=False)
mark_only_lora_as_trainable(model)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
model, optimizer = fabric.setup(model, optimizer)
train(fabric, model, optimizer, train_data, val_data, args.out_dir, logger, writer)
# Save the final LoRA checkpoint at the end of training
checkpoint = lora_state_dict(model)
fabric.save(os.path.join(args.out_dir, "lit-llama-lora-finetuned.pth"), checkpoint)
# Evaluation on validation set
evaluation(val_loader, net, model, logger, tokenizer, eval_wrapper=eval_wrapper, instruction=args.prompt)
def train(
fabric: L.Fabric,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
train_data: np.ndarray,
val_data: np.ndarray,
out_dir: str,
logger,
writer
) -> None:
"""The training loop.
Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
step_count = 0
for iter_num in range(max_iters):
if step_count <= args.warmup_steps:
# linear warmup
lr = args.learning_rate * step_count / args.warmup_steps
for param_group in optimizer.param_groups:
param_group['lr'] = lr
t0 = time.time()
input_ids, targets = get_batch(fabric, train_data)
logits = model(input_ids)
loss = loss_fn(logits, targets)
fabric.backward(loss)
if (iter_num + 1) % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
step_count += 1
if step_count % args.eval_interval == 0:
val_loss = validate(fabric, model, val_data)
writer.add_scalar('./Val', val_loss, step_count)
logger.info(f"step {iter_num}: val loss {val_loss:.4f}")
fabric.barrier()
if step_count % args.save_interval == 0:
print(f"Saving LoRA weights to {out_dir}")
# We are only saving the LoRA weights
# TODO: Provide a function/script to merge the LoRA weights with pretrained weights
checkpoint = lora_state_dict(model)
fabric.save(os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth"), checkpoint)
dt = time.time() - t0
if iter_num % args.log_interval == 0:
writer.add_scalar('./Train', loss, iter_num)
logger.info(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms")
@torch.no_grad()
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor:
fabric.print("Validating ...")
model.eval()
losses = torch.zeros(args.eval_iters)
for k in range(args.eval_iters):
input_ids, targets = get_batch(fabric, val_data)
logits = model(input_ids)
loss = loss_fn(logits, targets)
losses[k] = loss.item()
out = losses.mean()
model.train()
return out.item()
def loss_fn(logits, targets):
# shift the targets such that output n predicts token n+1
logits = logits[..., :-1, :].contiguous()
targets = targets[..., 1:].contiguous()
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return loss
def get_batch(fabric: L.Fabric, data: list):
ix = torch.randint(len(data), (args.micro_batch_size,))
input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
labels = [data[i]["labels"].type(torch.int64) for i in ix]
max_len = max(len(s) for s in input_ids)
def pad_left(x, pad_id):
# pad right based on the longest sequence
n = max_len - len(x)
return torch.cat((torch.full((n,), pad_id, dtype=x.dtype), x))
# def pad_right(x, pad_id):
# # pad right based on the longest sequence
# n = max_len - len(x)
# return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))
x = torch.stack([pad_left(x, pad_id=0) for x in input_ids])
y = torch.stack([pad_left(x, pad_id=-1) for x in labels])
x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
return x, y
def load_datasets():
print('Load data from:', args.data_dir)
train_data = torch.load(os.path.join(args.data_dir, "train.pt"))
val_data = torch.load(os.path.join(args.data_dir, "val.pt"))
return train_data, val_data
if __name__ == "__main__":
# Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
# torch.backends.cuda.enable_flash_sdp(False)
torch.set_float32_matmul_precision("high")
# from jsonargparse.cli import CLI
# args = option_trans.get_args_parser()
# args.dataname = 't2m'
# args.out_dir = 'out/lora/mydataset_v3'
# logger = utils_model.get_logger(args.out_dir)
# writer = SummaryWriter(args.out_dir)
# logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
# CLI(main)
main()