diff --git a/paddle/framework/grad_op_builder.cc b/paddle/framework/grad_op_builder.cc index da9613e776369..27f37d99232fd 100644 --- a/paddle/framework/grad_op_builder.cc +++ b/paddle/framework/grad_op_builder.cc @@ -18,59 +18,32 @@ permissions and limitations under the License. */ namespace paddle { namespace framework { -/** + class OpRegistry; using VarIndexMap = std::unordered_map; enum class OpArgType { IN, OUT }; -static std::vector* GetOpFormat(OperatorBase* op, const OpArgType& type) { - std::string key = type == OpArgType::IN ? "input_format" : "output_format"; - return op->attrs_.count(key) - ? &boost::get>(op->attrs_.at(key)) - : nullptr; -} - -static const std::vector* GetOpFormat(const OperatorBase* op, - const OpArgType& type) { - std::string key = type == OpArgType::IN ? "input_format" : "output_format"; - return op->attrs_.count(key) - ? &boost::get>(op->attrs_.at(key)) - : nullptr; -} - static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op, const OpArgType& src_type, const OpArgType& dst_type, - int& idx, bool is_grad) { - const std::vector& src_inout = + bool is_grad) { + const auto& src_inout = src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_; - const std::vector* src_format = GetOpFormat(src_op, src_type); - std::vector& dst_inout = + auto& dst_inout = dst_type == OpArgType::IN ? dst_op->inputs_ : dst_op->outputs_; - std::vector* dst_format = GetOpFormat(dst_op, dst_type); const OpProto& proto = OpRegistry::protos().at(src_op->type_); const auto& src_arg_list = src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); for (const auto& arg : src_arg_list) { std::string src_name = arg.name(); - std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name; - (*dst_op->in_out_idxs_)[dst_name] = idx++; - int src_arg_idx = src_op->in_out_idxs_->at(src_name); - int src_begin = - src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx); - int src_end = src_format == nullptr ? src_arg_idx + 1 - : src_format->at(src_arg_idx + 1); - for (int i = src_begin; i < src_end; ++i) { - std::string s = - is_grad ? src_inout[i] + kGradVarSuffix - : (arg.ignore_gradient() ? kEmptyVarName : src_inout[i]); - dst_inout.emplace_back(s); - } - if (dst_format != nullptr) { - dst_format->push_back(dst_inout.size()); + std::string dst_name = is_grad ? GradVarName(src_name) : src_name; + for (auto& var_name : src_inout.at(src_name)) { + std::string s = is_grad ? GradVarName(var_name) + : (arg.no_gradient() ? kEmptyVarName : var_name); + dst_inout[dst_name].emplace_back(s); } } } @@ -80,25 +53,12 @@ OperatorBase* BuildGradOp(const OperatorBase* op) { OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)(); grad_op->type_ = grad_op_type; grad_op->attrs_ = op->attrs_; - grad_op->attrs_.erase("input_format"); - grad_op->attrs_.erase("output_format"); - if (GetOpFormat(op, OpArgType::IN) != nullptr) { - grad_op->attrs_["output_format"] = std::vector({0}); - } - if (GetOpFormat(op, OpArgType::IN) != nullptr || - GetOpFormat(op, OpArgType::OUT) != nullptr) { - grad_op->attrs_["input_format"] = std::vector({0}); - } - grad_op->in_out_idxs_.reset(new VarIndexMap()); - int in_idx = 0; - int out_idx = 0; - TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I - TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G - TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG - TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG + TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, false); // I + TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, false); // O + TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, true); // OG + TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, true); // IG return grad_op; } -**/ -OperatorBase* BuildGradOp(const OperatorBase* op) { return nullptr; } + } // namespace framework } // namespace paddle diff --git a/paddle/framework/grad_op_builder_test.cc b/paddle/framework/grad_op_builder_test.cc index 1feae415a6667..19da90967f05b 100644 --- a/paddle/framework/grad_op_builder_test.cc +++ b/paddle/framework/grad_op_builder_test.cc @@ -51,14 +51,14 @@ TEST(GradOpBuilder, AddTwo) { "add_two", {{"X", {"x"}}, {"Y", {"y"}}}, {{"Out", {"out"}}}, {})); std::shared_ptr grad_add_op = f::OpRegistry::CreateGradOp(*add_op); - EXPECT_EQ(static_cast(grad_add_op->inputs_.size()), 4); - EXPECT_EQ(static_cast(grad_add_op->outputs_.size()), 2); + EXPECT_EQ(grad_add_op->inputs_.size(), 4UL); + EXPECT_EQ(grad_add_op->outputs_.size(), 2UL); EXPECT_EQ(grad_add_op->Input("X"), "x"); EXPECT_EQ(grad_add_op->Input("Y"), "y"); EXPECT_EQ(grad_add_op->Input("Out"), "out"); - EXPECT_EQ(grad_add_op->Input("Out@GRAD"), "out@GRAD"); - EXPECT_EQ(grad_add_op->Output("X@GRAD"), "x@GRAD"); - EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD"); + EXPECT_EQ(grad_add_op->Input(f::GradVarName("Out")), f::GradVarName("out")); + EXPECT_EQ(grad_add_op->Output(f::GradVarName("X")), f::GradVarName("x")); + EXPECT_EQ(grad_add_op->Output(f::GradVarName("Y")), f::GradVarName("y")); } REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker); @@ -67,17 +67,16 @@ REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker); REGISTER_GRADIENT_OP(io_ignored, io_ignored_grad, f::NOP); TEST(GradOpBuilder, MutiInOut) { - f::AttributeMap attrs{{"input_format", std::vector{0, 1, 4, 5}}, - {"output_format", std::vector{0, 1, 3}}}; std::shared_ptr test_op(f::OpRegistry::CreateOp( - "mult_io", {{"In1", {"in1"}}, - {"In2_mult", {"in2_1", "in2_2", "in2_3"}}, - {"In3", {"in3"}}}, - {{"Out1", {"Out2_mult"}}, {"Out2", {"out2_1", "out2_2"}}}, attrs)); + "mult_io", + {{"In1", {"in1"}}, + {"In2_mult", {"in2_1", "in2_2", "in2_3"}}, + {"In3", {"in3"}}}, + {{"Out1", {"out1"}}, {"Out2_mult", {"out2_1", "out2_2"}}}, {})); std::shared_ptr grad_test_op = f::OpRegistry::CreateGradOp(*test_op); - ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL); + ASSERT_EQ(grad_test_op->inputs_.size(), 3UL + 2UL + 2UL); EXPECT_EQ(grad_test_op->Input("In1"), "in1"); EXPECT_EQ(grad_test_op->Inputs("In2_mult"), std::vector({"in2_1", "in2_2", "in2_3"})); @@ -91,7 +90,7 @@ TEST(GradOpBuilder, MutiInOut) { std::vector( {f::GradVarName("out2_1"), f::GradVarName("out2_2")})); - ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); + ASSERT_EQ(grad_test_op->outputs_.size(), 3UL); EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), std::vector({f::GradVarName("in2_1"), @@ -101,18 +100,17 @@ TEST(GradOpBuilder, MutiInOut) { } TEST(GradOpBuilder, IOIgnoredInGradient) { - f::AttributeMap attrs{{"input_format", std::vector{0, 1, 3, 5}}, - {"output_format", std::vector{0, 2, 3}}}; std::shared_ptr test_op(f::OpRegistry::CreateOp( - "io_ignored", {{"In1", {"in1"}}, - {"In2_mult", {"in2_1", "in2_2"}}, - {"In3_mult", {"in3_1", "in3_2"}}}, - {{"Out1_mult", {"out1_1", "out1_2"}}, {"Out2", {"out2"}}}, attrs)); + "io_ignored", + {{"In1", {"in1"}}, + {"In2_mult", {"in2_1", "in2_2"}}, + {"In3_mult", {"in3_1", "in3_2"}}}, + {{"Out1_mult", {"out1_1", "out1_2"}}, {"Out2", {"out2"}}}, {})); std::shared_ptr grad_test_op = f::OpRegistry::CreateGradOp(*test_op); // 'In2' and 'Out2' are ignored in gradient calculating - ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL); + ASSERT_EQ(grad_test_op->inputs_.size(), 3UL + 2UL + 2UL); EXPECT_EQ(grad_test_op->Input("In1"), "in1"); EXPECT_EQ(grad_test_op->Inputs("In2_mult"), std::vector({f::kEmptyVarName, f::kEmptyVarName})); @@ -127,7 +125,7 @@ TEST(GradOpBuilder, IOIgnoredInGradient) { EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out2")), f::GradVarName("out2")); - ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); + ASSERT_EQ(grad_test_op->outputs_.size(), 3UL); EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), std::vector( diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index 74dbf4471a0ed..3e0df6909f1c8 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -131,14 +131,6 @@ TEST(OpRegistry, DefaultValue) { ASSERT_EQ(op->GetAttr("scale"), 1.0); } -static void SetInputFormat(paddle::framework::OpDesc* desc) { - auto attr = desc->add_attrs(); - attr->set_name("input_format"); - attr->set_type(paddle::framework::INTS); - attr->mutable_ints()->Add(0); - attr->mutable_ints()->Add(1); -} - TEST(OpRegistry, CustomChecker) { paddle::framework::OpDesc op_desc; op_desc.set_type("my_test_op"); @@ -149,7 +141,6 @@ TEST(OpRegistry, CustomChecker) { auto output = op_desc.add_outputs(); output->set_parameter("output"); *output->mutable_arguments()->Add() = "oo"; - SetInputFormat(&op_desc); // attr 'test_attr' is not set bool caught = false; @@ -189,7 +180,6 @@ TEST(OpRegistry, CustomChecker) { attr->set_name("test_attr"); attr->set_type(paddle::framework::AttrType::INT); attr->set_i(4); - SetInputFormat(&op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc); paddle::platform::CPUDeviceContext dev_ctx; paddle::framework::Scope scope; diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index fa5c14b63b2f6..6cfcdd161e287 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -185,11 +185,11 @@ TEST(OpKernel, all) { op_desc.set_type("op_with_kernel"); auto* ipt = op_desc.mutable_inputs()->Add(); *ipt->mutable_arguments()->Add() = "IN1"; - ipt->set_parameter("input"); + ipt->set_parameter("x"); auto* output = op_desc.mutable_outputs()->Add(); *output->mutable_arguments()->Add() = "OUT1"; - output->set_parameter("output"); + output->set_parameter("y"); auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); @@ -234,21 +234,6 @@ TEST(OpKernel, multi_inputs) { attr->set_type(paddle::framework::AttrType::FLOAT); attr->set_f(3.14); - auto attr0 = op_desc.mutable_attrs()->Add(); - attr0->set_name("input_format"); - attr0->set_type(paddle::framework::AttrType::INTS); - auto input_format = attr0->mutable_ints(); - input_format->Add(0); // x0 - input_format->Add(3); // k - input_format->Add(4); // end - - auto attr1 = op_desc.mutable_attrs()->Add(); - attr1->set_name("output_format"); - attr1->set_type(paddle::framework::AttrType::INTS); - auto output_format = attr1->mutable_ints(); - output_format->Add(0); // y0 - output_format->Add(2); // y1 - paddle::platform::CPUDeviceContext cpu_device_context; paddle::framework::Scope scope; scope.NewVar("x0")->GetMutable(); diff --git a/paddle/operators/recurrent_op_test.cc b/paddle/operators/recurrent_op_test.cc index 3fc2954ba1de0..d950296c4a6d0 100644 --- a/paddle/operators/recurrent_op_test.cc +++ b/paddle/operators/recurrent_op_test.cc @@ -22,382 +22,233 @@ #include "paddle/framework/tensor.h" #include "paddle/operators/net_op.h" -TEST(rnn, bad) { ASSERT_TRUE(false); } +namespace paddle { +namespace operators { -// namespace paddle { -// namespace operators { -// +using namespace paddle::framework; // using framework::make_ddim; // using framework::DDim; -// -// class RecurrentOpTest : public ::testing::Test { -// protected: -// virtual void SetUp() override { -// CreateGlobalVariables(); -// CreateStepNet(); -// CreateRNNOp(); -// } -// -// virtual void TearDown() override {} -// -// void CreateGlobalVariables() { -// // create input, and init content -// LOG(INFO) << "create global variable x"; -// for (auto inlink : std::vector{"x", "x0", "x1", "h"}) { -// Variable* x = scope_.NewVar(inlink); -// DDim dims = make_ddim(std::vector{ -// 10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); -// x->GetMutable()->mutable_data(dims, -// platform::CPUPlace()); -// } -// // create output alias just for test -// for (auto inlink : std::vector{"h@alias"}) { -// Variable* x = scope_.NewVar(inlink); -// DDim dims = -// make_ddim(std::vector{20 /*batch size*/, 30 /*input dim*/}); -// x->GetMutable()->mutable_data(dims, -// platform::CPUPlace()); -// } -// -// LOG(INFO) << "create global variable w"; -// Variable* w = scope_.NewVar("rnn/w"); -// w->GetMutable()->mutable_data( -// make_ddim(std::vector{30, 30}), platform::CPUPlace()); -// -// for (auto boot : std::vector{"h_boot"}) { -// LOG(INFO) << "create global variable " << boot; -// Variable* h_boot = scope_.NewVar(boot); -// h_boot->GetMutable()->mutable_data( -// make_ddim(std::vector{20 /*batch size*/, 30 /*input dim*/}), -// platform::CPUPlace()); -// } -// -// LOG(INFO) << "create variable step_scopes"; -// scope_.NewVar("step_scopes"); -// -// LOG(INFO) << "create variable h"; -// scope_.NewVar("h"); -// } -// -// void CreateRNNOp() { -// framework::OpDesc op_desc; -// -// op_desc.set_type("recurrent_op"); -// // inlinks 0 -// op_desc.add_inputs("x"); -// op_desc.add_inputs("x0"); -// op_desc.add_inputs("x1"); -// // boot_memories 3 -// op_desc.add_inputs("h_boot"); -// // step net 5 -// op_desc.add_inputs("step_net"); -// // outlinks 6 -// op_desc.add_outputs("h"); -// // step scopes 7 -// op_desc.add_outputs("step_scopes"); -// -// auto _input_format = std::vector{ -// 0, // in_link -// 3, // memories -// 4 // step_net -// }; -// auto input_format = op_desc.add_attrs(); -// input_format->set_name("input_format"); -// input_format->set_type(paddle::framework::AttrType::INTS); -// for (auto i : _input_format) { -// input_format->add_ints(i); -// } -// -// auto output_format = op_desc.add_attrs(); -// output_format->set_name("output_format"); -// output_format->set_type(paddle::framework::AttrType::INTS); -// for (auto i : std::vector{0, 1, 2}) { -// output_format->add_ints(i); -// } -// -// auto inlink_alias = op_desc.add_attrs(); -// inlink_alias->set_name("inlink_alias"); -// inlink_alias->set_type(paddle::framework::AttrType::STRINGS); -// -// auto outlink_alias = op_desc.add_attrs(); -// outlink_alias->set_name("outlink_alias"); -// outlink_alias->set_type(paddle::framework::AttrType::STRINGS); -// -// auto pre_memories = op_desc.add_attrs(); -// pre_memories->set_name("pre_memories"); -// pre_memories->set_type(paddle::framework::AttrType::STRINGS); -// -// auto memories = op_desc.add_attrs(); -// memories->set_name("memories"); -// memories->set_type(paddle::framework::AttrType::STRINGS); -// -// // create inlink_alias -// for (const auto& item : -// std::vector{"x@alias", "x0@alias", "x1@alias"}) { -// inlink_alias->add_strings(item); -// } -// // pre memories -// for (const auto& item : std::vector{"rnn/h@pre"}) { -// pre_memories->add_strings(item); -// } -// // memories -// for (const auto& item : std::vector{"rnn/h"}) { -// memories->add_strings(item); -// } -// // output alias -// for (const auto& item : std::vector{"h@alias"}) { -// outlink_alias->add_strings(item); -// } -// -// rnn_op_ = OpRegistry::CreateOp(op_desc); -// -// LOG(INFO) << "rnn_op finish init"; -// } -// -// void CreateStepNet() { -// LOG(INFO) << "create variable step_net"; -// Variable* var = scope_.NewVar("step_net"); -// auto net = var->GetMutable(); -// net->AddOp( -// OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {})); -// -// net->AddOp( -// OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {})); -// net->CompleteAddOp(); -// } -// -// // father scope -// Scope scope_; -// std::shared_ptr rnn_op_; -//}; -// -// TEST_F(RecurrentOpTest, Run) { -// platform::CPUDeviceContext ctx; -// rnn_op_->InferShape(scope_); -// rnn_op_->Run(scope_, ctx); -//} -// -// class RecurrentGradientAlgorithmTest : public ::testing::Test { -// protected: -// virtual void SetUp() override { -// CreateGlobalVariables(); -// CreateStepScopes(); -// CreateStepNet(); -// CreateRNNGradientAlgorithm(); -// -// // segment inputs -// SegmentInputs(); -// // link forward memories -// LinkeMemories(); -// } -// -// virtual void TearDown() override {} -// -// void CreateGlobalVariables() { -// // inputs: x -// LOG(INFO) << "create global variable x"; -// Variable* x = scope_.NewVar("x"); -// DDim dims = -// make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); -// x->GetMutable()->mutable_data(dims, platform::CPUPlace()); -// // inputs: h_boot -// LOG(INFO) << "create global variable h_boot"; -// Variable* h_boot = scope_.NewVar("h_boot"); -// h_boot->GetMutable()->mutable_data( -// make_ddim({20 /*batch size*/, 30 /*input dim*/}), -// platform::CPUPlace()); -// // inputs: w -// LOG(INFO) << "create global variable w"; -// Variable* w = scope_.NewVar("rnn/w"); -// w->GetMutable()->mutable_data(make_ddim({30, 30}), -// platform::CPUPlace()); -// // inputs: h_grad -// LOG(INFO) << "create variable h_grad"; -// Variable* dh = scope_.NewVar("h_grad"); -// dh->GetMutable()->mutable_data(make_ddim({10, 20, 30}), -// platform::CPUPlace()); -// // inputs: step_scopes -// LOG(INFO) << "create variable step_scopes"; -// scope_.NewVar("step_scopes"); -// // inputs: step_net -// LOG(INFO) << "create variable step_net"; -// scope_.NewVar("step_net"); -// // outputs: w_grad -// LOG(INFO) << "create global variable w_grad"; -// scope_.NewVar("rnn/w_grad"); -// // outputs: x_grad -// LOG(INFO) << "create global variable x_grad"; -// scope_.NewVar("x_grad"); -// // outputs: h_boot_grad -// LOG(INFO) << "create global variable h_boot_grad"; -// scope_.NewVar("h_boot_grad"); -// } -// -// void CreateStepScopes() { -// auto step_scopes = -// scope_.FindVar("step_scopes")->GetMutable>(); -// for (int i = 0; i < 10; ++i) { -// auto& scope = scope_.NewScope(); -// auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable(); -// pre_t->mutable_data({20, 30}, platform::CPUPlace()); -// auto tensor = scope.NewVar("rnn/h")->GetMutable(); -// tensor->mutable_data({20, 30}, platform::CPUPlace()); -// -// // for unit test of ConcatOutputs -// auto xg = scope.NewVar("rnn/x_grad")->GetMutable(); -// xg->mutable_data({20, 30}, platform::CPUPlace()); -// -// step_scopes->emplace_back(&scope); -// } -// -// // last time step -// auto g = -// (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable(); -// g->mutable_data({20, 30}, platform::CPUPlace()); -// } -// -// void CreateRNNGradientAlgorithm() { -// std::unique_ptr arg(new rnn::Argument()); -// arg->step_net = "step_net"; -// arg->step_scopes = "step_scopes"; -// rnn::Link inlink; -// inlink.external = "h_grad"; -// inlink.internal = "rnn/h_grad"; -// arg->inlinks = std::vector{inlink}; -// -// rnn::Link outlink; -// outlink.external = "x_grad"; -// outlink.internal = "rnn/x_grad"; -// arg->outlinks = std::vector{outlink}; -// -// rnn::MemoryAttr mem_attr; -// mem_attr.pre_var = "rnn/h_pre_grad"; -// mem_attr.var = "rnn/h_grad"; -// mem_attr.boot_var = "h_boot_grad"; -// arg->memories = std::vector{mem_attr}; -// -// rnn_grad_algo_.Init(std::move(arg)); -// } -// -// void CreateStepNet() { -// LOG(INFO) << "create variable step_net"; -// Variable* var = scope_.NewVar("step_net"); -// auto net = var->GetMutable(); -// net->AddOp(OpRegistry::CreateOp("mul", {"rnn/h_pre", "rnn/w", -// "rnn/s_grad"}, -// {"rnn/h_pre_grad", "rnn/w_grad"}, {})); -// -// net->AddOp(OpRegistry::CreateOp("add_two", {"rnn/h_grad"}, -// {"rnn/x_grad", "rnn/s_grad"}, {})); -// net->CompleteAddOp(); -// } -// -// void SegmentInputs() { -// LOG(INFO) << "segment inputs"; -// std::vector inlinks = {"x"}; -// std::vector inlinks_alias = {"rnn/x"}; -// -// rnn::Link inlink; -// inlink.external = "x"; -// inlink.internal = "rnn/x"; -// auto step_scopes = -// scope_.FindVar("step_scopes")->GetMutable>(); -// rnn::SegmentInputs(*step_scopes, std::vector{inlink}, 10, -// true /*infer_shape_mode*/); -// } -// -// void LinkeMemories() { -// LOG(INFO) << "link memories"; -// rnn::MemoryAttr mem_attr; -// mem_attr.pre_var = "rnn/h_pre"; -// mem_attr.var = "rnn/h"; -// mem_attr.boot_var = "boot_h"; -// std::vector memories; -// memories.push_back(mem_attr); -// auto step_scopes = -// scope_.FindVar("step_scopes")->GetMutable>(); -// for (int i = 1; i < 10; ++i) { -// rnn::LinkMemories(*step_scopes, memories, i, -1, -// true /*infer_shape_mode*/); -// } -// } -// -// Scope scope_; -// RecurrentGradientAlgorithm rnn_grad_algo_; -//}; -// -//// TEST_F(RecurrentGradientAlgorithmTest, Run) { -//// platform::CPUDeviceContext ctx; -//// rnn_grad_algo_.Run(scope_, ctx); -//// } -// -//} // namespace operators -//} // namespace paddle -// -// TEST(RecurrentOp, LinkMemories) { -// using namespace paddle::framework; -// using namespace paddle::platform; -// using namespace paddle::operators; -// -// // create and init step scopes -// size_t len = 10; -// std::vector step_scopes; -// for (size_t i = 0; i < len; ++i) { -// auto scope = new Scope(); -// scope->NewVar("pre_h"); -// auto tensor = scope->NewVar("h")->GetMutable(); -// float* data = tensor->mutable_data({15, 20}, CPUPlace()); -// for (size_t j = 0; j < 15 * 20; ++j) { -// data[j] = rand() * (1. / (double)RAND_MAX); -// } -// step_scopes.push_back(scope); -// } -// -// // create MemoryAttr -// rnn::MemoryAttr mem_attr; -// mem_attr.pre_var = "pre_h"; -// mem_attr.var = "h"; -// mem_attr.boot_var = "boot_h"; -// std::vector memories; -// memories.push_back(mem_attr); -// -// for (size_t i = 1; i < len; ++i) { -// rnn::LinkMemories(step_scopes, memories, i, -1, false -// /*infer_shape_mode*/); -// } -// // check -// for (size_t i = 0; i < len - 1; ++i) { -// const float* a = -// step_scopes[i]->FindVar("h")->GetMutable()->data(); -// const float* b = step_scopes[i + 1] -// ->FindVar("pre_h") -// ->GetMutable() -// ->data(); -// for (size_t j = 0; j < 15 * 20; ++j) { -// ASSERT_FLOAT_EQ(a[j], b[j]); -// } -// } -// -// for (int i = len - 2; i >= 0; --i) { -// rnn::LinkMemories(step_scopes, memories, i, 1, false -// /*infer_shape_mode*/); -// } -// // check -// for (int i = len - 2; i >= 0; --i) { -// const float* a = -// step_scopes[i]->FindVar("pre_h")->GetMutable()->data(); -// const float* b = -// step_scopes[i + 1]->FindVar("h")->GetMutable()->data(); -// for (size_t j = 0; j < 15 * 20; ++j) { -// ASSERT_FLOAT_EQ(a[j], b[j]); -// } -// } -// -// for (auto s : step_scopes) { -// delete s; -// } -//} -// -// USE_OP(add_two); -// USE_OP(mul); -// USE_OP_WITHOUT_KERNEL(recurrent_op); + +class RecurrentGradientAlgorithmTest : public ::testing::Test { + protected: + virtual void SetUp() override { + CreateGlobalVariables(); + CreateStepScopes(); + CreateStepNet(); + CreateRNNGradientAlgorithm(); + + // segment inputs + SegmentInputs(); + // link forward memories + LinkeMemories(); + } + + virtual void TearDown() override {} + + void CreateGlobalVariables() { + // inputs: x + LOG(INFO) << "create global variable x"; + Variable* x = scope_.NewVar("x"); + DDim dims = + make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/}); + x->GetMutable()->mutable_data(dims, platform::CPUPlace()); + // inputs: h_boot + LOG(INFO) << "create global variable h_boot"; + Variable* h_boot = scope_.NewVar("h_boot"); + h_boot->GetMutable()->mutable_data( + make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace()); + // inputs: w + LOG(INFO) << "create global variable w"; + Variable* w = scope_.NewVar("rnn/w"); + w->GetMutable()->mutable_data(make_ddim({30, 30}), + platform::CPUPlace()); + // inputs: h_grad + LOG(INFO) << "create variable h_grad"; + Variable* dh = scope_.NewVar("h_grad"); + dh->GetMutable()->mutable_data(make_ddim({10, 20, 30}), + platform::CPUPlace()); + // inputs: step_scopes + LOG(INFO) << "create variable step_scopes"; + scope_.NewVar("step_scopes"); + // inputs: step_net + LOG(INFO) << "create variable step_net"; + scope_.NewVar("step_net"); + // outputs: w_grad + LOG(INFO) << "create global variable w_grad"; + scope_.NewVar("rnn/w_grad"); + // outputs: x_grad + LOG(INFO) << "create global variable x_grad"; + scope_.NewVar("x_grad"); + // outputs: h_boot_grad + LOG(INFO) << "create global variable h_boot_grad"; + scope_.NewVar("h_boot_grad"); + } + + void CreateStepScopes() { + auto step_scopes = + scope_.FindVar("step_scopes")->GetMutable>(); + for (int i = 0; i < 10; ++i) { + auto& scope = scope_.NewScope(); + auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable(); + pre_t->mutable_data({20, 30}, platform::CPUPlace()); + auto tensor = scope.NewVar("rnn/h")->GetMutable(); + tensor->mutable_data({20, 30}, platform::CPUPlace()); + + // for unit test of ConcatOutputs + auto xg = scope.NewVar("rnn/x_grad")->GetMutable(); + xg->mutable_data({20, 30}, platform::CPUPlace()); + + step_scopes->emplace_back(&scope); + } + + // last time step + auto g = (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable(); + g->mutable_data({20, 30}, platform::CPUPlace()); + } + + void CreateRNNGradientAlgorithm() { + std::unique_ptr arg(new rnn::Argument()); + arg->step_net = "step_net"; + arg->step_scopes = "step_scopes"; + rnn::Link inlink; + inlink.external = "h_grad"; + inlink.internal = "rnn/h_grad"; + arg->inlinks = std::vector{inlink}; + + rnn::Link outlink; + outlink.external = "x_grad"; + outlink.internal = "rnn/x_grad"; + arg->outlinks = std::vector{outlink}; + + rnn::MemoryAttr mem_attr; + mem_attr.pre_var = "rnn/h_pre_grad"; + mem_attr.var = "rnn/h_grad"; + mem_attr.boot_var = "h_boot_grad"; + arg->memories = std::vector{mem_attr}; + + rnn_grad_algo_.Init(std::move(arg)); + } + + void CreateStepNet() { + LOG(INFO) << "create variable step_net"; + Variable* var = scope_.NewVar("step_net"); + auto net = var->GetMutable(); + // TODO(qingqing) modify backward op create for RNNOp unit test + // and the unit test will be removed to Python. + // net->AddOp(OpRegistry::CreateOp("mul", {"X", {"rnn/h_pre", "rnn/w", + // "rnn/s_grad"}}, {"Y", {"rnn/h_pre_grad", "rnn/w_grad"}}, {})); + + // net->AddOp(OpRegistry::CreateOp("add_two", {"X", {"rnn/h_grad"}}, + // {"Y", {"rnn/x_grad"}}, {"Out", "rnn/s_grad"}}, {})); + net->CompleteAddOp(); + } + + void SegmentInputs() { + LOG(INFO) << "segment inputs"; + std::vector inlinks = {"x"}; + std::vector inlinks_alias = {"rnn/x"}; + + rnn::Link inlink; + inlink.external = "x"; + inlink.internal = "rnn/x"; + auto step_scopes = + scope_.FindVar("step_scopes")->GetMutable>(); + rnn::SegmentInputs(*step_scopes, std::vector{inlink}, 10, + true /*infer_shape_mode*/); + } + + void LinkeMemories() { + LOG(INFO) << "link memories"; + rnn::MemoryAttr mem_attr; + mem_attr.pre_var = "rnn/h_pre"; + mem_attr.var = "rnn/h"; + mem_attr.boot_var = "boot_h"; + std::vector memories; + memories.push_back(mem_attr); + auto step_scopes = + scope_.FindVar("step_scopes")->GetMutable>(); + for (int i = 1; i < 10; ++i) { + rnn::LinkMemories(*step_scopes, memories, i, -1, + true /*infer_shape_mode*/); + } + } + + Scope scope_; + RecurrentGradientAlgorithm rnn_grad_algo_; +}; + +// TEST_F(RecurrentGradientAlgorithmTest, Run) { +// platform::CPUDeviceContext ctx; +// rnn_grad_algo_.Run(scope_, ctx); +// } + +} // namespace operators +} // namespace paddle + +TEST(RecurrentOp, LinkMemories) { + using namespace paddle::framework; + using namespace paddle::platform; + using namespace paddle::operators; + + // create and init step scopes + size_t len = 10; + std::vector step_scopes; + for (size_t i = 0; i < len; ++i) { + auto scope = new Scope(); + scope->NewVar("pre_h"); + auto tensor = scope->NewVar("h")->GetMutable(); + float* data = tensor->mutable_data({15, 20}, CPUPlace()); + for (size_t j = 0; j < 15 * 20; ++j) { + data[j] = rand() * (1. / (double)RAND_MAX); + } + step_scopes.push_back(scope); + } + + // create MemoryAttr + rnn::MemoryAttr mem_attr; + mem_attr.pre_var = "pre_h"; + mem_attr.var = "h"; + mem_attr.boot_var = "boot_h"; + std::vector memories; + memories.push_back(mem_attr); + + for (size_t i = 1; i < len; ++i) { + rnn::LinkMemories(step_scopes, memories, i, -1, false + /*infer_shape_mode*/); + } + // check + for (size_t i = 0; i < len - 1; ++i) { + const float* a = + step_scopes[i]->FindVar("h")->GetMutable()->data(); + const float* b = step_scopes[i + 1] + ->FindVar("pre_h") + ->GetMutable() + ->data(); + for (size_t j = 0; j < 15 * 20; ++j) { + ASSERT_FLOAT_EQ(a[j], b[j]); + } + } + + for (int i = len - 2; i >= 0; --i) { + rnn::LinkMemories(step_scopes, memories, i, 1, false + /*infer_shape_mode*/); + } + // check + for (int i = len - 2; i >= 0; --i) { + const float* a = + step_scopes[i]->FindVar("pre_h")->GetMutable()->data(); + const float* b = + step_scopes[i + 1]->FindVar("h")->GetMutable()->data(); + for (size_t j = 0; j < 15 * 20; ++j) { + ASSERT_FLOAT_EQ(a[j], b[j]); + } + } + + for (auto s : step_scopes) { + delete s; + } +} + +USE_OP(add_two); +USE_OP(mul); +USE_OP_WITHOUT_KERNEL(recurrent_op); diff --git a/python/paddle/v2/framework/tests/test_operator.py b/python/paddle/v2/framework/tests/test_operator.py index 4f164e1a69e3f..ef635b464c09d 100644 --- a/python/paddle/v2/framework/tests/test_operator.py +++ b/python/paddle/v2/framework/tests/test_operator.py @@ -74,6 +74,7 @@ def test_multiple_input_plain_output(self): expected1.inputs.extend(['x', 'w', 'b']) expected1.outputs.extend(['y']) expected1.type = 'fc' + # the input_format can be removed after testing attr = expected1.attrs.add() attr.name = 'input_format' attr.type = attribute_pb2.INTS @@ -86,6 +87,7 @@ def test_multiple_input_plain_output(self): expected2.inputs.extend(['x1', 'x2', 'x3', 'w1', 'w2', 'w3', 'b']) expected2.outputs.extend(['y']) expected2.type = 'fc' + # the input_format can be removed after testing attr = expected2.attrs.add() attr.name = 'input_format' attr.type = attribute_pb2.INTS