-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathuse_pb_v3_tiny.py
297 lines (240 loc) · 10.8 KB
/
use_pb_v3_tiny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import cv2
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
def read_class_names(class_name_path):
names = {}
with open(class_name_path, 'r') as data:
for ID, name in enumerate(data):
names[ID] = name.strip('\n')
return names
def py_nms(boxes, scores, max_boxes=50, iou_thresh=0.5):
"""
Pure Python NMS baseline.
Arguments: boxes: shape of [-1, 4], the value of '-1' means that dont know the
exact number of boxes
scores: shape of [-1,]
max_boxes: representing the maximum of boxes to be selected by non_max_suppression
iou_thresh: representing iou_threshold for deciding to keep boxes
"""
assert boxes.shape[1] == 4 and len(scores.shape) == 1
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1) * (y2 - y1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= iou_thresh)[0]
order = order[inds + 1]
return keep[:max_boxes]
def cpu_nms(boxes, scores, num_classes, max_boxes=50, score_thresh=0.5, iou_thresh=0.5):
"""
Perform NMS on CPU.
Arguments:
boxes: shape [1, 10647, 4]
scores: shape [1, 10647, num_classes]
"""
boxes = boxes.reshape(-1, 4)
scores = scores.reshape(-1, num_classes)
# Picked bounding boxes
picked_boxes, picked_score, picked_label = [], [], []
for i in range(num_classes):
indices = np.where(scores[:, i] >= score_thresh)
filter_boxes = boxes[indices]
filter_scores = scores[:, i][indices]
if len(filter_boxes) == 0:
continue
# do non_max_suppression on the cpu
indices = py_nms(filter_boxes, filter_scores,
max_boxes=max_boxes, iou_thresh=iou_thresh)
picked_boxes.append(filter_boxes[indices])
picked_score.append(filter_scores[indices])
picked_label.append(np.ones(len(indices), dtype='int32') * i)
if len(picked_boxes) == 0:
return None, None, None
boxes = np.concatenate(picked_boxes, axis=0)
score = np.concatenate(picked_score, axis=0)
label = np.concatenate(picked_label, axis=0)
return boxes, score, label
def letterbox_resize(img, new_width, new_height, interp=0):
'''
Letterbox resize. keep the original aspect ratio in the resized image.
'''
ori_height, ori_width = img.shape[:2]
resize_ratio = min(new_width / ori_width, new_height / ori_height)
resize_w = int(resize_ratio * ori_width)
resize_h = int(resize_ratio * ori_height)
img = cv2.resize(img, (resize_w, resize_h), interpolation=interp)
image_padded = np.full((new_height, new_width, 3), 128, np.uint8)
dw = int((new_width - resize_w) / 2)
dh = int((new_height - resize_h) / 2)
image_padded[dh: resize_h + dh, dw: resize_w + dw, :] = img
return image_padded, resize_ratio, dw, dh
def get_color_table(class_num, seed=4):
random.seed(seed)
color_table = {}
for i in range(class_num):
color_table[i] = [random.randint(0, 255) for _ in range(3)]
return color_table
def plot_one_box(img, coord, label=None, color=None, line_thickness=None):
'''
coord: [x_min, y_min, x_max, y_max] format coordinates.
img: img to plot on.
label: str. The label name.
color: int. color index.
line_thickness: int. rectangle line thickness.
'''
tl = line_thickness or int(round(0.002 * max(img.shape[0:2]))) # line thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(coord[0]), int(coord[1])), (int(coord[2]), int(coord[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=float(tl) / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, float(tl) / 3, [0, 0, 0], thickness=tf, lineType=cv2.LINE_AA)
def reorg_layer_numpy(feature_map, anchors):
'''
feature_map: a feature_map from [feature_map_1, feature_map_2] returned
from `forward` function
anchors: shape: [3, 2]
'''
# NOTE: size in [h, w] format! don't get messed up!
grid_size = feature_map.shape[1:3] # [13, 13]
# the downscale ratio in height and weight
ratio = img_size / grid_size
ratio.astype(np.float32)
# rescale the anchors to the feature_map
# NOTE: the anchor is in [w, h] format!
rescaled_anchors = [(anchor[0] / ratio[1], anchor[1] / ratio[0]) for anchor in anchors]
feature_map = np.reshape(feature_map, [-1, grid_size[0], grid_size[1], 3, 5 + class_num])
# split the feature_map along the last dimension
# shape info: take 416x416 input image and the 13*13 feature_map for example:
# box_centers: [N, 13, 13, 3, 2] last_dimension: [center_x, center_y]
# box_sizes: [N, 13, 13, 3, 2] last_dimension: [width, height]
# conf_logits: [N, 13, 13, 3, 1]
# prob_logits: [N, 13, 13, 3, class_num]
box_centers, box_sizes, conf_logits, prob_logits = np.split(feature_map, [2, 4, 5], axis=-1)
box_centers = sigmoid(box_centers)
# use some broadcast tricks to get the mesh coordinates
grid_x = np.linspace(0, grid_size[1], grid_size[1], dtype=np.int32)
grid_y = np.linspace(0, grid_size[0], grid_size[0], dtype=np.int32)
grid_x, grid_y = np.meshgrid(grid_x, grid_y)
x_offset = np.reshape(grid_x, (-1, 1))
y_offset = np.reshape(grid_y, (-1, 1))
x_y_offset = np.concatenate([x_offset, y_offset], axis=-1)
# shape: [13, 13, 1, 2]
x_y_offset = np.reshape(x_y_offset, [grid_size[0], grid_size[1], 1, 2])
x_y_offset.astype(np.float32)
# get the absolute box coordinates on the feature_map
box_centers = box_centers + x_y_offset
# rescale to the original image scale
box_centers = box_centers * ratio[::-1]
# avoid getting possible nan value with tf.clip_by_value
box_sizes = np.exp(box_sizes) * rescaled_anchors
# box_sizes = tf.clip_by_value(tf.exp(box_sizes), 1e-9, 100) * rescaled_anchors
# rescale to the original image scale
box_sizes = box_sizes * ratio[::-1]
# shape: [N, 13, 13, 3, 4]
# last dimension: (center_x, center_y, w, h)
boxes = np.concatenate([box_centers, box_sizes], axis=-1)
# shape:
# x_y_offset: [13, 13, 1, 2]
# boxes: [N, 13, 13, 3, 4], rescaled to the original image scale
# conf_logits: [N, 13, 13, 3, 1]
# prob_logits: [N, 13, 13, 3, class_num]
return x_y_offset, boxes, conf_logits, prob_logits
def predict_numpy(feature_maps):
feature_map_1, feature_map_2 = feature_maps
feature_map_anchors = [(feature_map_1, anchors[3:6]),
(feature_map_2, anchors[0:3])]
reorg_results = [reorg_layer_numpy(feature_map, anchors) for (feature_map, anchors) in feature_map_anchors]
def _reshape(result):
x_y_offset, boxes, conf_logits, prob_logits = result
grid_size = x_y_offset.shape[:2]
boxes = np.reshape(boxes, [-1, grid_size[0] * grid_size[1] * 3, 4])
conf_logits = np.reshape(conf_logits, [-1, grid_size[0] * grid_size[1] * 3, 1])
prob_logits = np.reshape(prob_logits, [-1, grid_size[0] * grid_size[1] * 3, class_num])
# shape: (take 416*416 input image and feature_map_1 for example)
# boxes: [N, 13*13*3, 4]
# conf_logits: [N, 13*13*3, 1]
# prob_logits: [N, 13*13*3, class_num]
return boxes, conf_logits, prob_logits
boxes_list, confs_list, probs_list = [], [], []
for result in reorg_results:
boxes, conf_logits, prob_logits = _reshape(result)
confs = sigmoid(conf_logits)
probs = sigmoid(prob_logits)
boxes_list.append(boxes)
confs_list.append(confs)
probs_list.append(probs)
# collect results on three scales
# take 416*416 input image for example:
# shape: [N, (13*13+26*26+52*52)*3, 4]
boxes = np.concatenate(boxes_list, axis=1)
# shape: [N, (13*13+26*26+52*52)*3, 1]
confs = np.concatenate(confs_list, axis=1)
# shape: [N, (13*13+26*26+52*52)*3, class_num]
probs = np.concatenate(probs_list, axis=1)
center_x, center_y, width, height = np.split(boxes, [1, 2, 3], axis=-1)
x_min = center_x - width / 2
y_min = center_y - height / 2
x_max = center_x + width / 2
y_max = center_y + height / 2
boxes = np.concatenate([x_min, y_min, x_max, y_max], axis=-1)
return boxes, confs, probs
def sigmoid(x):
return 1 / (1 + np.exp(-x))
anchor_path = "./data/yolo_tiny_anchors.txt"
class_name_path = "./data/coco.names"
anchors = np.reshape(np.asarray(open(anchor_path, 'r').read().split(','), np.float32), [-1, 2])
classes = read_class_names(class_name_path)
class_num = len(classes)
color_table = get_color_table(class_num)
img_size = np.asarray([416, 416])
sess = tf.Session(config=config)
with gfile.FastGFile("./pb_model/frozen_model_v3tiny.pb",
'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
sess.run(tf.global_variables_initializer())
input = sess.graph.get_tensor_by_name('image:0')
feature_map_1 = sess.graph.get_tensor_by_name('yolov3tiny/head/feature_map_1:0')
feature_map_2 = sess.graph.get_tensor_by_name('yolov3tiny/head/feature_map_2:0')
#preprocess image
img_ori = cv2.imread("./data/demo_data/dog.jpg")
img, resize_ratio, dw, dh = letterbox_resize(img_ori, img_size[0], img_size[1])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.asarray(img, np.float32)
img = img[np.newaxis, :] / 255.
#inference
feature_1, feature_2 = sess.run([feature_map_1, feature_map_2], feed_dict={input: img})
#decode
pred_boxes, pred_confs, pred_probs = predict_numpy([feature_1, feature_2])
pred_scores = pred_confs * pred_probs
boxes, scores, labels = cpu_nms(pred_boxes, pred_scores, class_num, max_boxes=200, score_thresh=0.3, iou_thresh=0.45)
boxes[:, [0, 2]] = (boxes[:, [0, 2]] - dw) / resize_ratio
boxes[:, [1, 3]] = (boxes[:, [1, 3]] - dh) / resize_ratio
for i in range(len(boxes)):
x0, y0, x1, y1 = boxes[i]
plot_one_box(img_ori, [x0, y0, x1, y1], label=classes[labels[i]] + ', {:.2f}%'.format(scores[i] * 100),
color=color_table[labels[i]])
cv2.imshow("img", img_ori)
cv2.waitKey(0)