-
Notifications
You must be signed in to change notification settings - Fork 7k
/
shufflenetv2.py
408 lines (343 loc) · 15.1 KB
/
shufflenetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from functools import partial
from typing import Any, Callable, List, Optional
import torch
import torch.nn as nn
from torch import Tensor
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _ovewrite_named_param, handle_legacy_interface
__all__ = [
"ShuffleNetV2",
"ShuffleNet_V2_X0_5_Weights",
"ShuffleNet_V2_X1_0_Weights",
"ShuffleNet_V2_X1_5_Weights",
"ShuffleNet_V2_X2_0_Weights",
"shufflenet_v2_x0_5",
"shufflenet_v2_x1_0",
"shufflenet_v2_x1_5",
"shufflenet_v2_x2_0",
]
def channel_shuffle(x: Tensor, groups: int) -> Tensor:
batchsize, num_channels, height, width = x.size()
channels_per_group = num_channels // groups
# reshape
x = x.view(batchsize, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batchsize, num_channels, height, width)
return x
class InvertedResidual(nn.Module):
def __init__(self, inp: int, oup: int, stride: int) -> None:
super().__init__()
if not (1 <= stride <= 3):
raise ValueError("illegal stride value")
self.stride = stride
branch_features = oup // 2
if (self.stride == 1) and (inp != branch_features << 1):
raise ValueError(
f"Invalid combination of stride {stride}, inp {inp} and oup {oup} values. If stride == 1 then inp should be equal to oup // 2 << 1."
)
if self.stride > 1:
self.branch1 = nn.Sequential(
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
nn.BatchNorm2d(inp),
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
)
else:
self.branch1 = nn.Sequential()
self.branch2 = nn.Sequential(
nn.Conv2d(
inp if (self.stride > 1) else branch_features,
branch_features,
kernel_size=1,
stride=1,
padding=0,
bias=False,
),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
nn.BatchNorm2d(branch_features),
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
)
@staticmethod
def depthwise_conv(
i: int, o: int, kernel_size: int, stride: int = 1, padding: int = 0, bias: bool = False
) -> nn.Conv2d:
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
def forward(self, x: Tensor) -> Tensor:
if self.stride == 1:
x1, x2 = x.chunk(2, dim=1)
out = torch.cat((x1, self.branch2(x2)), dim=1)
else:
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
out = channel_shuffle(out, 2)
return out
class ShuffleNetV2(nn.Module):
def __init__(
self,
stages_repeats: List[int],
stages_out_channels: List[int],
num_classes: int = 1000,
inverted_residual: Callable[..., nn.Module] = InvertedResidual,
) -> None:
super().__init__()
_log_api_usage_once(self)
if len(stages_repeats) != 3:
raise ValueError("expected stages_repeats as list of 3 positive ints")
if len(stages_out_channels) != 5:
raise ValueError("expected stages_out_channels as list of 5 positive ints")
self._stage_out_channels = stages_out_channels
input_channels = 3
output_channels = self._stage_out_channels[0]
self.conv1 = nn.Sequential(
nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(inplace=True),
)
input_channels = output_channels
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# Static annotations for mypy
self.stage2: nn.Sequential
self.stage3: nn.Sequential
self.stage4: nn.Sequential
stage_names = [f"stage{i}" for i in [2, 3, 4]]
for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]):
seq = [inverted_residual(input_channels, output_channels, 2)]
for i in range(repeats - 1):
seq.append(inverted_residual(output_channels, output_channels, 1))
setattr(self, name, nn.Sequential(*seq))
input_channels = output_channels
output_channels = self._stage_out_channels[-1]
self.conv5 = nn.Sequential(
nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(inplace=True),
)
self.fc = nn.Linear(output_channels, num_classes)
def _forward_impl(self, x: Tensor) -> Tensor:
# See note [TorchScript super()]
x = self.conv1(x)
x = self.maxpool(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.conv5(x)
x = x.mean([2, 3]) # globalpool
x = self.fc(x)
return x
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def _shufflenetv2(
weights: Optional[WeightsEnum],
progress: bool,
*args: Any,
**kwargs: Any,
) -> ShuffleNetV2:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
model = ShuffleNetV2(*args, **kwargs)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
_COMMON_META = {
"min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES,
"recipe": "https://github.com/ericsun99/Shufflenet-v2-Pytorch",
}
class ShuffleNet_V2_X0_5_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
# Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch
url="https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 1366792,
"_metrics": {
"ImageNet-1K": {
"acc@1": 60.552,
"acc@5": 81.746,
}
},
"_ops": 0.04,
"_file_size": 5.282,
"_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""",
},
)
DEFAULT = IMAGENET1K_V1
class ShuffleNet_V2_X1_0_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
# Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch
url="https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 2278604,
"_metrics": {
"ImageNet-1K": {
"acc@1": 69.362,
"acc@5": 88.316,
}
},
"_ops": 0.145,
"_file_size": 8.791,
"_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""",
},
)
DEFAULT = IMAGENET1K_V1
class ShuffleNet_V2_X1_5_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/shufflenetv2_x1_5-3c479a10.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 3503624,
"_metrics": {
"ImageNet-1K": {
"acc@1": 72.996,
"acc@5": 91.086,
}
},
"_ops": 0.296,
"_file_size": 13.557,
"_docs": """
These weights were trained from scratch by using TorchVision's `new training recipe
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
""",
},
)
DEFAULT = IMAGENET1K_V1
class ShuffleNet_V2_X2_0_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/shufflenetv2_x2_0-8be3c8ee.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 7393996,
"_metrics": {
"ImageNet-1K": {
"acc@1": 76.230,
"acc@5": 93.006,
}
},
"_ops": 0.583,
"_file_size": 28.433,
"_docs": """
These weights were trained from scratch by using TorchVision's `new training recipe
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
""",
},
)
DEFAULT = IMAGENET1K_V1
@register_model()
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1))
def shufflenet_v2_x0_5(
*, weights: Optional[ShuffleNet_V2_X0_5_Weights] = None, progress: bool = True, **kwargs: Any
) -> ShuffleNetV2:
"""
Constructs a ShuffleNetV2 architecture with 0.5x output channels, as described in
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
<https://arxiv.org/abs/1807.11164>`__.
Args:
weights (:class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights
:members:
"""
weights = ShuffleNet_V2_X0_5_Weights.verify(weights)
return _shufflenetv2(weights, progress, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs)
@register_model()
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1))
def shufflenet_v2_x1_0(
*, weights: Optional[ShuffleNet_V2_X1_0_Weights] = None, progress: bool = True, **kwargs: Any
) -> ShuffleNetV2:
"""
Constructs a ShuffleNetV2 architecture with 1.0x output channels, as described in
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
<https://arxiv.org/abs/1807.11164>`__.
Args:
weights (:class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights
:members:
"""
weights = ShuffleNet_V2_X1_0_Weights.verify(weights)
return _shufflenetv2(weights, progress, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs)
@register_model()
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1))
def shufflenet_v2_x1_5(
*, weights: Optional[ShuffleNet_V2_X1_5_Weights] = None, progress: bool = True, **kwargs: Any
) -> ShuffleNetV2:
"""
Constructs a ShuffleNetV2 architecture with 1.5x output channels, as described in
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
<https://arxiv.org/abs/1807.11164>`__.
Args:
weights (:class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights
:members:
"""
weights = ShuffleNet_V2_X1_5_Weights.verify(weights)
return _shufflenetv2(weights, progress, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs)
@register_model()
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1))
def shufflenet_v2_x2_0(
*, weights: Optional[ShuffleNet_V2_X2_0_Weights] = None, progress: bool = True, **kwargs: Any
) -> ShuffleNetV2:
"""
Constructs a ShuffleNetV2 architecture with 2.0x output channels, as described in
`ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
<https://arxiv.org/abs/1807.11164>`__.
Args:
weights (:class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights
:members:
"""
weights = ShuffleNet_V2_X2_0_Weights.verify(weights)
return _shufflenetv2(weights, progress, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)