-
Notifications
You must be signed in to change notification settings - Fork 7k
/
test_ops.py
883 lines (698 loc) · 38.3 KB
/
test_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
from common_utils import set_rng_seed
import math
import unittest
import numpy as np
import torch
from torch import Tensor
from torch.autograd import gradcheck
from torch.jit.annotations import Tuple
from torch.nn.modules.utils import _pair
from torchvision import ops
class OpTester(object):
@classmethod
def setUpClass(cls):
cls.dtype = torch.float64
def test_forward_cpu_contiguous(self):
self._test_forward(device=torch.device('cpu'), contiguous=True)
def test_forward_cpu_non_contiguous(self):
self._test_forward(device=torch.device('cpu'), contiguous=False)
def test_backward_cpu_contiguous(self):
self._test_backward(device=torch.device('cpu'), contiguous=True)
def test_backward_cpu_non_contiguous(self):
self._test_backward(device=torch.device('cpu'), contiguous=False)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
def test_forward_cuda_contiguous(self):
self._test_forward(device=torch.device('cuda'), contiguous=True)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
def test_forward_cuda_non_contiguous(self):
self._test_forward(device=torch.device('cuda'), contiguous=False)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
def test_backward_cuda_contiguous(self):
self._test_backward(device=torch.device('cuda'), contiguous=True)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
def test_backward_cuda_non_contiguous(self):
self._test_backward(device=torch.device('cuda'), contiguous=False)
def _test_forward(self, device, contiguous):
pass
def _test_backward(self, device, contiguous):
pass
class RoIOpTester(OpTester):
def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None):
x_dtype = self.dtype if x_dtype is None else x_dtype
rois_dtype = self.dtype if rois_dtype is None else rois_dtype
pool_size = 5
# n_channels % (pool_size ** 2) == 0 required for PS opeartions.
n_channels = 2 * (pool_size ** 2)
x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
if not contiguous:
x = x.permute(0, 1, 3, 2)
rois = torch.tensor([[0, 0, 0, 9, 9], # format is (xyxy)
[0, 0, 5, 4, 9],
[0, 5, 5, 9, 9],
[1, 0, 0, 9, 9]],
dtype=rois_dtype, device=device)
pool_h, pool_w = pool_size, pool_size
y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1)
# the following should be true whether we're running an autocast test or not.
self.assertTrue(y.dtype == x.dtype)
gt_y = self.expected_fn(x, rois, pool_h, pool_w, spatial_scale=1,
sampling_ratio=-1, device=device, dtype=self.dtype)
tol = 1e-3 if (x_dtype is torch.half or rois_dtype is torch.half) else 1e-5
self.assertTrue(torch.allclose(gt_y.to(y.dtype), y, rtol=tol, atol=tol))
def _test_backward(self, device, contiguous):
pool_size = 2
x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True)
if not contiguous:
x = x.permute(0, 1, 3, 2)
rois = torch.tensor([[0, 0, 0, 4, 4], # format is (xyxy)
[0, 0, 2, 3, 4],
[0, 2, 2, 4, 4]],
dtype=self.dtype, device=device)
def func(z):
return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
script_func = self.get_script_fn(rois, pool_size)
self.assertTrue(gradcheck(func, (x,)))
self.assertTrue(gradcheck(script_func, (x,)))
def test_boxes_shape(self):
self._test_boxes_shape()
def _helper_boxes_shape(self, func):
# test boxes as Tensor[N, 5]
with self.assertRaises(AssertionError):
a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
func(a, boxes, output_size=(2, 2))
# test boxes as List[Tensor[N, 4]]
with self.assertRaises(AssertionError):
a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
ops.roi_pool(a, [boxes], output_size=(2, 2))
def fn(*args, **kwargs):
pass
def get_script_fn(*args, **kwargs):
pass
def expected_fn(*args, **kwargs):
pass
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
def test_autocast(self):
for x_dtype in (torch.float, torch.half):
for rois_dtype in (torch.float, torch.half):
with torch.cuda.amp.autocast():
self._test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)
class RoIPoolTester(RoIOpTester, unittest.TestCase):
def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
def get_script_fn(self, rois, pool_size):
@torch.jit.script
def script_fn(input, rois, pool_size):
# type: (Tensor, Tensor, int) -> Tensor
return ops.roi_pool(input, rois, pool_size, 1.0)[0]
return lambda x: script_fn(x, rois, pool_size)
def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
device=None, dtype=torch.float64):
if device is None:
device = torch.device("cpu")
n_channels = x.size(1)
y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
def get_slice(k, block):
return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
for roi_idx, roi in enumerate(rois):
batch_idx = int(roi[0])
j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]
roi_h, roi_w = roi_x.shape[-2:]
bin_h = roi_h / pool_h
bin_w = roi_w / pool_w
for i in range(0, pool_h):
for j in range(0, pool_w):
bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
if bin_x.numel() > 0:
y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
return y
def _test_boxes_shape(self):
self._helper_boxes_shape(ops.roi_pool)
class PSRoIPoolTester(RoIOpTester, unittest.TestCase):
def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
def get_script_fn(self, rois, pool_size):
@torch.jit.script
def script_fn(input, rois, pool_size):
# type: (Tensor, Tensor, int) -> Tensor
return ops.ps_roi_pool(input, rois, pool_size, 1.0)[0]
return lambda x: script_fn(x, rois, pool_size)
def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
device=None, dtype=torch.float64):
if device is None:
device = torch.device("cpu")
n_input_channels = x.size(1)
self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
n_output_channels = int(n_input_channels / (pool_h * pool_w))
y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)
def get_slice(k, block):
return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
for roi_idx, roi in enumerate(rois):
batch_idx = int(roi[0])
j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]
roi_height = max(i_end - i_begin, 1)
roi_width = max(j_end - j_begin, 1)
bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)
for i in range(0, pool_h):
for j in range(0, pool_w):
bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
if bin_x.numel() > 0:
area = bin_x.size(-2) * bin_x.size(-1)
for c_out in range(0, n_output_channels):
c_in = c_out * (pool_h * pool_w) + pool_w * i + j
t = torch.sum(bin_x[c_in, :, :])
y[roi_idx, c_out, i, j] = t / area
return y
def _test_boxes_shape(self):
self._helper_boxes_shape(ops.ps_roi_pool)
def bilinear_interpolate(data, y, x, snap_border=False):
height, width = data.shape
if snap_border:
if -1 < y <= 0:
y = 0
elif height - 1 <= y < height:
y = height - 1
if -1 < x <= 0:
x = 0
elif width - 1 <= x < width:
x = width - 1
y_low = int(math.floor(y))
x_low = int(math.floor(x))
y_high = y_low + 1
x_high = x_low + 1
wy_h = y - y_low
wx_h = x - x_low
wy_l = 1 - wy_h
wx_l = 1 - wx_h
val = 0
for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
if 0 <= yp < height and 0 <= xp < width:
val += wx * wy * data[yp, xp]
return val
class RoIAlignTester(RoIOpTester, unittest.TestCase):
def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
return ops.RoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
sampling_ratio=sampling_ratio, aligned=aligned)(x, rois)
def get_script_fn(self, rois, pool_size):
@torch.jit.script
def script_fn(input, rois, pool_size):
# type: (Tensor, Tensor, int) -> Tensor
return ops.roi_align(input, rois, pool_size, 1.0)[0]
return lambda x: script_fn(x, rois, pool_size)
def expected_fn(self, in_data, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False,
device=None, dtype=torch.float64):
if device is None:
device = torch.device("cpu")
n_channels = in_data.size(1)
out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
offset = 0.5 if aligned else 0.
for r, roi in enumerate(rois):
batch_idx = int(roi[0])
j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
roi_h = i_end - i_begin
roi_w = j_end - j_begin
bin_h = roi_h / pool_h
bin_w = roi_w / pool_w
for i in range(0, pool_h):
start_h = i_begin + i * bin_h
grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
for j in range(0, pool_w):
start_w = j_begin + j * bin_w
grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
for channel in range(0, n_channels):
val = 0
for iy in range(0, grid_h):
y = start_h + (iy + 0.5) * bin_h / grid_h
for ix in range(0, grid_w):
x = start_w + (ix + 0.5) * bin_w / grid_w
val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
val /= grid_h * grid_w
out_data[r, channel, i, j] = val
return out_data
def _test_boxes_shape(self):
self._helper_boxes_shape(ops.roi_align)
class PSRoIAlignTester(RoIOpTester, unittest.TestCase):
def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
sampling_ratio=sampling_ratio)(x, rois)
def get_script_fn(self, rois, pool_size):
@torch.jit.script
def script_fn(input, rois, pool_size):
# type: (Tensor, Tensor, int) -> Tensor
return ops.ps_roi_align(input, rois, pool_size, 1.0)[0]
return lambda x: script_fn(x, rois, pool_size)
def expected_fn(self, in_data, rois, pool_h, pool_w, device, spatial_scale=1,
sampling_ratio=-1, dtype=torch.float64):
if device is None:
device = torch.device("cpu")
n_input_channels = in_data.size(1)
self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
n_output_channels = int(n_input_channels / (pool_h * pool_w))
out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)
for r, roi in enumerate(rois):
batch_idx = int(roi[0])
j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])
roi_h = i_end - i_begin
roi_w = j_end - j_begin
bin_h = roi_h / pool_h
bin_w = roi_w / pool_w
for i in range(0, pool_h):
start_h = i_begin + i * bin_h
grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
for j in range(0, pool_w):
start_w = j_begin + j * bin_w
grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
for c_out in range(0, n_output_channels):
c_in = c_out * (pool_h * pool_w) + pool_w * i + j
val = 0
for iy in range(0, grid_h):
y = start_h + (iy + 0.5) * bin_h / grid_h
for ix in range(0, grid_w):
x = start_w + (ix + 0.5) * bin_w / grid_w
val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
val /= grid_h * grid_w
out_data[r, c_out, i, j] = val
return out_data
def _test_boxes_shape(self):
self._helper_boxes_shape(ops.ps_roi_align)
class MultiScaleRoIAlignTester(unittest.TestCase):
def test_msroialign_repr(self):
fmap_names = ['0']
output_size = (7, 7)
sampling_ratio = 2
# Pass mock feature map names
t = ops.poolers.MultiScaleRoIAlign(fmap_names, output_size, sampling_ratio)
# Check integrity of object __repr__ attribute
expected_string = (f"MultiScaleRoIAlign(featmap_names={fmap_names}, output_size={output_size}, "
f"sampling_ratio={sampling_ratio})")
self.assertEqual(t.__repr__(), expected_string)
class NMSTester(unittest.TestCase):
def reference_nms(self, boxes, scores, iou_threshold):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
Returns:
picked: a list of indexes of the kept boxes
"""
picked = []
_, indexes = scores.sort(descending=True)
while len(indexes) > 0:
current = indexes[0]
picked.append(current.item())
if len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[1:]
rest_boxes = boxes[indexes, :]
iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
indexes = indexes[iou <= iou_threshold]
return torch.as_tensor(picked)
def _create_tensors_with_iou(self, N, iou_thresh):
# force last box to have a pre-defined iou with the first box
# let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
# then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
# we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
# Adjust the threshold upward a bit with the intent of creating
# at least one box that exceeds (barely) the threshold and so
# should be suppressed.
boxes = torch.rand(N, 4) * 100
boxes[:, 2:] += boxes[:, :2]
boxes[-1, :] = boxes[0, :]
x0, y0, x1, y1 = boxes[-1].tolist()
iou_thresh += 1e-5
boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
scores = torch.rand(N)
return boxes, scores
def test_nms(self):
err_msg = 'NMS incompatible between CPU and reference implementation for IoU={}'
for iou in [0.2, 0.5, 0.8]:
boxes, scores = self._create_tensors_with_iou(1000, iou)
keep_ref = self.reference_nms(boxes, scores, iou)
keep = ops.nms(boxes, scores, iou)
self.assertTrue(torch.allclose(keep, keep_ref), err_msg.format(iou))
self.assertRaises(RuntimeError, ops.nms, torch.rand(4), torch.rand(3), 0.5)
self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 5), torch.rand(3), 0.5)
self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(3, 2), 0.5)
self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(4), 0.5)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
def test_nms_cuda(self, dtype=torch.float64):
tol = 1e-3 if dtype is torch.half else 1e-5
err_msg = 'NMS incompatible between CPU and CUDA for IoU={}'
for iou in [0.2, 0.5, 0.8]:
boxes, scores = self._create_tensors_with_iou(1000, iou)
r_cpu = ops.nms(boxes, scores, iou)
r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou)
is_eq = torch.allclose(r_cpu, r_cuda.cpu())
if not is_eq:
# if the indices are not the same, ensure that it's because the scores
# are duplicate
is_eq = torch.allclose(scores[r_cpu], scores[r_cuda.cpu()], rtol=tol, atol=tol)
self.assertTrue(is_eq, err_msg.format(iou))
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
def test_autocast(self):
for dtype in (torch.float, torch.half):
with torch.cuda.amp.autocast():
self.test_nms_cuda(dtype=dtype)
class NewEmptyTensorTester(unittest.TestCase):
def test_new_empty_tensor(self):
input = torch.tensor([2., 2.], requires_grad=True)
new_shape = [3, 3]
out = torch.ops.torchvision._new_empty_tensor_op(input, new_shape)
assert out.size() == torch.Size([3, 3])
assert out.dtype == input.dtype
class DeformConvTester(OpTester, unittest.TestCase):
def expected_fn(self, x, weight, offset, mask, bias, stride=1, padding=0, dilation=1):
stride_h, stride_w = _pair(stride)
pad_h, pad_w = _pair(padding)
dil_h, dil_w = _pair(dilation)
weight_h, weight_w = weight.shape[-2:]
n_batches, n_in_channels, in_h, in_w = x.shape
n_out_channels = weight.shape[0]
out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1
n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
in_c_per_offset_grp = n_in_channels // n_offset_grps
n_weight_grps = n_in_channels // weight.shape[1]
in_c_per_weight_grp = weight.shape[1]
out_c_per_weight_grp = n_out_channels // n_weight_grps
out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
for b in range(n_batches):
for c_out in range(n_out_channels):
for i in range(out_h):
for j in range(out_w):
for di in range(weight_h):
for dj in range(weight_w):
for c in range(in_c_per_weight_grp):
weight_grp = c_out // out_c_per_weight_grp
c_in = weight_grp * in_c_per_weight_grp + c
offset_grp = c_in // in_c_per_offset_grp
mask_idx = offset_grp * (weight_h * weight_w) + di * weight_w + dj
offset_idx = 2 * mask_idx
pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]
mask_value = 1.0
if mask is not None:
mask_value = mask[b, mask_idx, i, j]
out[b, c_out, i, j] += (mask_value * weight[c_out, c, di, dj] *
bilinear_interpolate(x[b, c_in, :, :], pi, pj))
out += bias.view(1, n_out_channels, 1, 1)
return out
def get_fn_args(self, device, contiguous, batch_sz, dtype):
n_in_channels = 6
n_out_channels = 2
n_weight_grps = 2
n_offset_grps = 3
stride = (2, 1)
pad = (1, 0)
dilation = (2, 1)
stride_h, stride_w = stride
pad_h, pad_w = pad
dil_h, dil_w = dilation
weight_h, weight_w = (3, 2)
in_h, in_w = (5, 4)
out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1
x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=dtype, requires_grad=True)
offset = torch.randn(batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w,
device=device, dtype=dtype, requires_grad=True)
mask = torch.randn(batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w,
device=device, dtype=dtype, requires_grad=True)
weight = torch.randn(n_out_channels, n_in_channels // n_weight_grps, weight_h, weight_w,
device=device, dtype=dtype, requires_grad=True)
bias = torch.randn(n_out_channels, device=device, dtype=dtype, requires_grad=True)
if not contiguous:
x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
return x, weight, offset, mask, bias, stride, pad, dilation
def _test_forward(self, device, contiguous, dtype=None):
dtype = self.dtype if dtype is None else dtype
for batch_sz in [0, 33]:
self._test_forward_with_batchsize(device, contiguous, batch_sz, dtype)
def _test_forward_with_batchsize(self, device, contiguous, batch_sz, dtype):
x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(device, contiguous, batch_sz, dtype)
in_channels = 6
out_channels = 2
kernel_size = (3, 2)
groups = 2
tol = 1e-3 if dtype is torch.half else 1e-5
layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups).to(device=x.device, dtype=dtype)
res = layer(x, offset, mask)
weight = layer.weight.data
bias = layer.bias.data
expected = self.expected_fn(x, weight, offset, mask, bias, stride=stride, padding=padding, dilation=dilation)
self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
'\nres:\n{}\nexpected:\n{}'.format(res, expected))
# no modulation test
res = layer(x, offset)
expected = self.expected_fn(x, weight, offset, None, bias, stride=stride, padding=padding, dilation=dilation)
self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
'\nres:\n{}\nexpected:\n{}'.format(res, expected))
# test for wrong sizes
with self.assertRaises(RuntimeError):
wrong_offset = torch.rand_like(offset[:, :2])
res = layer(x, wrong_offset)
with self.assertRaises(RuntimeError):
wrong_mask = torch.rand_like(mask[:, :2])
res = layer(x, offset, wrong_mask)
def _test_backward(self, device, contiguous):
for batch_sz in [0, 33]:
self._test_backward_with_batchsize(device, contiguous, batch_sz)
def _test_backward_with_batchsize(self, device, contiguous, batch_sz):
x, weight, offset, mask, bias, stride, padding, dilation = self.get_fn_args(device, contiguous,
batch_sz, self.dtype)
def func(x_, offset_, mask_, weight_, bias_):
return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
padding=padding, dilation=dilation, mask=mask_)
gradcheck(func, (x, offset, mask, weight, bias), nondet_tol=1e-5)
def func_no_mask(x_, offset_, weight_, bias_):
return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
padding=padding, dilation=dilation, mask=None)
gradcheck(func_no_mask, (x, offset, weight, bias), nondet_tol=1e-5)
@torch.jit.script
def script_func(x_, offset_, mask_, weight_, bias_, stride_, pad_, dilation_):
# type:(Tensor, Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
padding=pad_, dilation=dilation_, mask=mask_)
gradcheck(lambda z, off, msk, wei, bi: script_func(z, off, msk, wei, bi, stride, padding, dilation),
(x, offset, mask, weight, bias), nondet_tol=1e-5)
@torch.jit.script
def script_func_no_mask(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
# type:(Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
padding=pad_, dilation=dilation_, mask=None)
gradcheck(lambda z, off, wei, bi: script_func_no_mask(z, off, wei, bi, stride, padding, dilation),
(x, offset, weight, bias), nondet_tol=1e-5)
# Test from https://github.com/pytorch/vision/issues/2598
# Run on CUDA only
if "cuda" in device.type:
# compare grads computed on CUDA with grads computed on CPU
true_cpu_grads = None
init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
img = torch.randn(8, 9, 1000, 110)
offset = torch.rand(8, 2 * 3 * 3, 1000, 110)
mask = torch.rand(8, 3 * 3, 1000, 110)
if not contiguous:
img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
else:
weight = init_weight
for d in ["cpu", "cuda"]:
out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1, mask=mask.to(d))
out.mean().backward()
if true_cpu_grads is None:
true_cpu_grads = init_weight.grad
self.assertTrue(true_cpu_grads is not None)
else:
self.assertTrue(init_weight.grad is not None)
res_grads = init_weight.grad.to("cpu")
self.assertTrue(true_cpu_grads.allclose(res_grads))
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
def test_autocast(self):
set_rng_seed(0)
for dtype in (torch.float, torch.half):
with torch.cuda.amp.autocast():
self._test_forward(torch.device("cuda"), False, dtype=dtype)
class FrozenBNTester(unittest.TestCase):
def test_frozenbatchnorm2d_repr(self):
num_features = 32
eps = 1e-5
t = ops.misc.FrozenBatchNorm2d(num_features, eps=eps)
# Check integrity of object __repr__ attribute
expected_string = f"FrozenBatchNorm2d({num_features}, eps={eps})"
self.assertEqual(t.__repr__(), expected_string)
def test_frozenbatchnorm2d_eps(self):
sample_size = (4, 32, 28, 28)
x = torch.rand(sample_size)
state_dict = dict(weight=torch.rand(sample_size[1]),
bias=torch.rand(sample_size[1]),
running_mean=torch.rand(sample_size[1]),
running_var=torch.rand(sample_size[1]),
num_batches_tracked=torch.tensor(100))
# Check that default eps is equal to the one of BN
fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
fbn.load_state_dict(state_dict, strict=False)
bn = torch.nn.BatchNorm2d(sample_size[1]).eval()
bn.load_state_dict(state_dict)
# Difference is expected to fall in an acceptable range
self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))
# Check computation for eps > 0
fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
fbn.load_state_dict(state_dict, strict=False)
bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
bn.load_state_dict(state_dict)
self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))
def test_frozenbatchnorm2d_n_arg(self):
"""Ensure a warning is thrown when passing `n` kwarg
(remove this when support of `n` is dropped)"""
self.assertWarns(DeprecationWarning, ops.misc.FrozenBatchNorm2d, 32, eps=1e-5, n=32)
class BoxConversionTester(unittest.TestCase):
@staticmethod
def _get_box_sequences():
# Define here the argument type of `boxes` supported by region pooling operations
box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
box_list = [torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
torch.tensor([[0, 0, 100, 100]], dtype=torch.float)]
box_tuple = tuple(box_list)
return box_tensor, box_list, box_tuple
def test_check_roi_boxes_shape(self):
# Ensure common sequences of tensors are supported
for box_sequence in self._get_box_sequences():
self.assertIsNone(ops._utils.check_roi_boxes_shape(box_sequence))
def test_convert_boxes_to_roi_format(self):
# Ensure common sequences of tensors yield the same result
ref_tensor = None
for box_sequence in self._get_box_sequences():
if ref_tensor is None:
ref_tensor = box_sequence
else:
self.assertTrue(torch.equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence)))
class BoxTester(unittest.TestCase):
def test_bbox_same(self):
box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
[10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
exp_xyxy = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
[10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
box_same = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xyxy")
self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
assert torch.all(torch.eq(box_same, exp_xyxy)).item()
box_same = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="xywh")
self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
assert torch.all(torch.eq(box_same, exp_xyxy)).item()
box_same = ops.box_convert(box_tensor, in_fmt="cxcywh", out_fmt="cxcywh")
self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
assert torch.all(torch.eq(box_same, exp_xyxy)).item()
def test_bbox_xyxy_xywh(self):
# Simple test convert boxes to xywh and back. Make sure they are same.
# box_tensor is in x1 y1 x2 y2 format.
box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
[10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
exp_xywh = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
[10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)
box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
self.assertEqual(exp_xywh.size(), torch.Size([4, 4]))
self.assertEqual(exp_xywh.dtype, box_tensor.dtype)
assert torch.all(torch.eq(box_xywh, exp_xywh)).item()
# Reverse conversion
box_xyxy = ops.box_convert(box_xywh, in_fmt="xywh", out_fmt="xyxy")
self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
assert torch.all(torch.eq(box_xyxy, box_tensor)).item()
def test_bbox_xyxy_cxcywh(self):
# Simple test convert boxes to xywh and back. Make sure they are same.
# box_tensor is in x1 y1 x2 y2 format.
box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
[10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
[20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)
box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()
# Reverse conversion
box_xyxy = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xyxy")
self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
assert torch.all(torch.eq(box_xyxy, box_tensor)).item()
def test_bbox_xywh_cxcywh(self):
box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
[10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)
# This is wrong
exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
[20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)
box_cxcywh = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="cxcywh")
self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()
# Reverse conversion
box_xywh = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xywh")
self.assertEqual(box_xywh.size(), torch.Size([4, 4]))
self.assertEqual(box_xywh.dtype, box_tensor.dtype)
assert torch.all(torch.eq(box_xywh, box_tensor)).item()
def test_bbox_invalid(self):
box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
[10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)
invalid_infmts = ["xwyh", "cxwyh"]
invalid_outfmts = ["xwcx", "xhwcy"]
for inv_infmt in invalid_infmts:
for inv_outfmt in invalid_outfmts:
self.assertRaises(ValueError, ops.box_convert, box_tensor, inv_infmt, inv_outfmt)
def test_bbox_convert_jit(self):
box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
[10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
scripted_fn = torch.jit.script(ops.box_convert)
TOLERANCE = 1e-3
box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
scripted_xywh = scripted_fn(box_tensor, 'xyxy', 'xywh')
self.assertTrue((scripted_xywh - box_xywh).abs().max() < TOLERANCE)
box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
scripted_cxcywh = scripted_fn(box_tensor, 'xyxy', 'cxcywh')
self.assertTrue((scripted_cxcywh - box_cxcywh).abs().max() < TOLERANCE)
class BoxAreaTester(unittest.TestCase):
def test_box_area(self):
# A bounding box of area 10000 and a degenerate case
box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=torch.float)
expected = torch.tensor([10000, 0])
calc_area = ops.box_area(box_tensor)
assert calc_area.size() == torch.Size([2])
assert calc_area.dtype == box_tensor.dtype
assert torch.all(torch.eq(calc_area, expected)).item() is True
class BoxIouTester(unittest.TestCase):
def test_iou(self):
# Boxes to test Iou
boxes1 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
boxes2 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
# Expected IoU matrix for these boxes
expected = torch.tensor([[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]])
out = ops.box_iou(boxes1, boxes2)
# Check if all elements of tensor are as expected.
assert out.size() == torch.Size([3, 3])
tolerance = 1e-4
assert ((out - expected).abs().max() < tolerance).item() is True
class GenBoxIouTester(unittest.TestCase):
def test_gen_iou(self):
# Test Generalized IoU
boxes1 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
boxes2 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
# Expected gIoU matrix for these boxes
expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611],
[-0.7778, -0.8611, 1.0]])
out = ops.generalized_box_iou(boxes1, boxes2)
# Check if all elements of tensor are as expected.
assert out.size() == torch.Size([3, 3])
tolerance = 1e-4
assert ((out - expected).abs().max() < tolerance).item() is True
if __name__ == '__main__':
unittest.main()