-
Notifications
You must be signed in to change notification settings - Fork 667
/
Copy pathcommonvoice_test.py
73 lines (63 loc) · 3.17 KB
/
commonvoice_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import csv
from pathlib import Path
from torchaudio.datasets import COMMONVOICE
from torchaudio_unittest.common_utils import (
TempDirMixin,
TorchaudioTestCase,
get_whitenoise,
save_wav,
normalize_wav,
)
class TestCommonVoice(TempDirMixin, TorchaudioTestCase):
backend = 'default'
root_dir = None
data = []
_headers = [u"client_ids", u"path", u"sentence", u"up_votes", u"down_votes", u"age", u"gender", u"accent"]
# Note: extension is changed to wav for the sake of test
# Note: the first content is missing values for `age`, `gender` and `accent` as in the original data.
_train_csv_contents = [
["9d16c5d980247861130e0480e2719f448be73d86a496c36d01a477cbdecd8cfd1399403d7a77bf458d211a70711b2da0845c",
"common_voice_en_18885784.wav",
"He was accorded a State funeral, and was buried in Drayton and Toowoomba Cemetery.", "2", "0", "", "", ""],
["c82eb9291328620f06025a1f8112b909099e447e485e99236cb87df008650250e79fea5ca772061fb6a370830847b9c44d20",
"common_voice_en_556542.wav", "Once more into the breach", "2", "0", "thirties", "male", "us"],
["f74d880c5ad4c5917f314a604d3fc4805159d255796fb9f8defca35333ecc002bdf53dc463503c12674ea840b21b4a507b7c",
"common_voice_en_18607573.wav",
"Caddy, show Miss Clare and Miss Summerson their rooms.", "2", "0", "twenties", "male", "canada"],
]
sample_rate = 48000
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
# Tsv file name difference does not mean different subset, testing as a whole dataset here
tsv_filename = os.path.join(cls.root_dir, "train.tsv")
audio_base_path = os.path.join(cls.root_dir, "clips")
os.makedirs(audio_base_path, exist_ok=True)
with open(tsv_filename, "w", newline='') as tsv:
writer = csv.writer(tsv, delimiter='\t')
writer.writerow(cls._headers)
for i, content in enumerate(cls._train_csv_contents):
writer.writerow(content)
# Generate and store audio
audio_path = os.path.join(audio_base_path, content[1])
data = get_whitenoise(sample_rate=cls.sample_rate, duration=1, n_channels=1, seed=i, dtype='float32')
save_wav(audio_path, data, cls.sample_rate)
# Append data entry
cls.data.append((normalize_wav(data), cls.sample_rate, dict(zip(cls._headers, content))))
def _test_commonvoice(self, dataset):
n_ite = 0
for i, (waveform, sample_rate, dictionary) in enumerate(dataset):
expected_dictionary = self.data[i][2]
expected_data = self.data[i][0]
self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8)
assert sample_rate == TestCommonVoice.sample_rate
assert dictionary == expected_dictionary
n_ite += 1
assert n_ite == len(self.data)
def test_commonvoice_str(self):
dataset = COMMONVOICE(self.root_dir)
self._test_commonvoice(dataset)
def test_commonvoice_path(self):
dataset = COMMONVOICE(Path(self.root_dir))
self._test_commonvoice(dataset)