diff --git a/Lib/test/sortperf.py b/Lib/test/sortperf.py deleted file mode 100644 index 14a9d827ed57c5..00000000000000 --- a/Lib/test/sortperf.py +++ /dev/null @@ -1,169 +0,0 @@ -"""Sort performance test. - -See main() for command line syntax. -See tabulate() for output format. - -""" - -import sys -import time -import random -import marshal -import tempfile -import os - -td = tempfile.gettempdir() - -def randfloats(n): - """Return a list of n random floats in [0, 1).""" - # Generating floats is expensive, so this writes them out to a file in - # a temp directory. If the file already exists, it just reads them - # back in and shuffles them a bit. - fn = os.path.join(td, "rr%06d" % n) - try: - fp = open(fn, "rb") - except OSError: - r = random.random - result = [r() for i in range(n)] - try: - try: - fp = open(fn, "wb") - marshal.dump(result, fp) - fp.close() - fp = None - finally: - if fp: - try: - os.unlink(fn) - except OSError: - pass - except OSError as msg: - print("can't write", fn, ":", msg) - else: - result = marshal.load(fp) - fp.close() - # Shuffle it a bit... - for i in range(10): - i = random.randrange(n) - temp = result[:i] - del result[:i] - temp.reverse() - result.extend(temp) - del temp - assert len(result) == n - return result - -def flush(): - sys.stdout.flush() - -def doit(L): - t0 = time.perf_counter() - L.sort() - t1 = time.perf_counter() - print("%6.2f" % (t1-t0), end=' ') - flush() - -def tabulate(r): - r"""Tabulate sort speed for lists of various sizes. - - The sizes are 2**i for i in r (the argument, a list). - - The output displays i, 2**i, and the time to sort arrays of 2**i - floating point numbers with the following properties: - - *sort: random data - \sort: descending data - /sort: ascending data - 3sort: ascending, then 3 random exchanges - +sort: ascending, then 10 random at the end - %sort: ascending, then randomly replace 1% of the elements w/ random values - ~sort: many duplicates - =sort: all equal - !sort: worst case scenario - - """ - cases = tuple([ch + "sort" for ch in r"*\/3+%~=!"]) - fmt = ("%2s %7s" + " %6s"*len(cases)) - print(fmt % (("i", "2**i") + cases)) - for i in r: - n = 1 << i - L = randfloats(n) - print("%2d %7d" % (i, n), end=' ') - flush() - doit(L) # *sort - L.reverse() - doit(L) # \sort - doit(L) # /sort - - # Do 3 random exchanges. - for dummy in range(3): - i1 = random.randrange(n) - i2 = random.randrange(n) - L[i1], L[i2] = L[i2], L[i1] - doit(L) # 3sort - - # Replace the last 10 with random floats. - if n >= 10: - L[-10:] = [random.random() for dummy in range(10)] - doit(L) # +sort - - # Replace 1% of the elements at random. - for dummy in range(n // 100): - L[random.randrange(n)] = random.random() - doit(L) # %sort - - # Arrange for lots of duplicates. - if n > 4: - del L[4:] - L = L * (n // 4) - # Force the elements to be distinct objects, else timings can be - # artificially low. - L = list(map(lambda x: --x, L)) - doit(L) # ~sort - del L - - # All equal. Again, force the elements to be distinct objects. - L = list(map(abs, [-0.5] * n)) - doit(L) # =sort - del L - - # This one looks like [3, 2, 1, 0, 0, 1, 2, 3]. It was a bad case - # for an older implementation of quicksort, which used the median - # of the first, last and middle elements as the pivot. - half = n // 2 - L = list(range(half - 1, -1, -1)) - L.extend(range(half)) - # Force to float, so that the timings are comparable. This is - # significantly faster if we leave them as ints. - L = list(map(float, L)) - doit(L) # !sort - print() - -def main(): - """Main program when invoked as a script. - - One argument: tabulate a single row. - Two arguments: tabulate a range (inclusive). - Extra arguments are used to seed the random generator. - - """ - # default range (inclusive) - k1 = 15 - k2 = 20 - if sys.argv[1:]: - # one argument: single point - k1 = k2 = int(sys.argv[1]) - if sys.argv[2:]: - # two arguments: specify range - k2 = int(sys.argv[2]) - if sys.argv[3:]: - # derive random seed from remaining arguments - x = 1 - for a in sys.argv[3:]: - x = 69069 * x + hash(a) - random.seed(x) - r = range(k1, k2+1) # include the end point - tabulate(r) - -if __name__ == '__main__': - main() diff --git a/Tools/scripts/sortperf.py b/Tools/scripts/sortperf.py new file mode 100644 index 00000000000000..b54681524ac173 --- /dev/null +++ b/Tools/scripts/sortperf.py @@ -0,0 +1,196 @@ +""" +List sort performance test. + +To install `pyperf` you would need to: + + python3 -m pip install pyperf + +To run: + + python3 Tools/scripts/sortperf + +Options: + + * `benchmark` name to run + * `--rnd-seed` to set random seed + * `--size` to set the sorted list size + +Based on https://github.com/python/cpython/blob/963904335e579bfe39101adf3fd6a0cf705975ff/Lib/test/sortperf.py +""" + +from __future__ import annotations + +import argparse +import time +import random + + +# =============== +# Data generation +# =============== + +def _random_data(size: int, rand: random.Random) -> list[float]: + result = [rand.random() for _ in range(size)] + # Shuffle it a bit... + for i in range(10): + i = rand.randrange(size) + temp = result[:i] + del result[:i] + temp.reverse() + result.extend(temp) + del temp + assert len(result) == size + return result + + +def list_sort(size: int, rand: random.Random) -> list[float]: + return _random_data(size, rand) + + +def list_sort_descending(size: int, rand: random.Random) -> list[float]: + return list(reversed(list_sort_ascending(size, rand))) + + +def list_sort_ascending(size: int, rand: random.Random) -> list[float]: + return sorted(_random_data(size, rand)) + + +def list_sort_ascending_exchanged(size: int, rand: random.Random) -> list[float]: + result = list_sort_ascending(size, rand) + # Do 3 random exchanges. + for _ in range(3): + i1 = rand.randrange(size) + i2 = rand.randrange(size) + result[i1], result[i2] = result[i2], result[i1] + return result + + +def list_sort_ascending_random(size: int, rand: random.Random) -> list[float]: + assert size >= 10, "This benchmark requires size to be >= 10" + result = list_sort_ascending(size, rand) + # Replace the last 10 with random floats. + result[-10:] = [rand.random() for _ in range(10)] + return result + + +def list_sort_ascending_one_percent(size: int, rand: random.Random) -> list[float]: + result = list_sort_ascending(size, rand) + # Replace 1% of the elements at random. + for _ in range(size // 100): + result[rand.randrange(size)] = rand.random() + return result + + +def list_sort_duplicates(size: int, rand: random.Random) -> list[float]: + assert size >= 4 + result = list_sort_ascending(4, rand) + # Arrange for lots of duplicates. + result = result * (size // 4) + # Force the elements to be distinct objects, else timings can be + # artificially low. + return list(map(abs, result)) + + +def list_sort_equal(size: int, rand: random.Random) -> list[float]: + # All equal. Again, force the elements to be distinct objects. + return list(map(abs, [-0.519012] * size)) + + +def list_sort_worst_case(size: int, rand: random.Random) -> list[float]: + # This one looks like [3, 2, 1, 0, 0, 1, 2, 3]. It was a bad case + # for an older implementation of quicksort, which used the median + # of the first, last and middle elements as the pivot. + half = size // 2 + result = list(range(half - 1, -1, -1)) + result.extend(range(half)) + # Force to float, so that the timings are comparable. This is + # significantly faster if we leave them as ints. + return list(map(float, result)) + + +# ========= +# Benchmark +# ========= + +class Benchmark: + def __init__(self, name: str, size: int, seed: int) -> None: + self._name = name + self._size = size + self._seed = seed + self._random = random.Random(self._seed) + + def run(self, loops: int) -> float: + all_data = self._prepare_data(loops) + start = time.perf_counter() + + for data in all_data: + data.sort() # Benching this method! + + return time.perf_counter() - start + + def _prepare_data(self, loops: int) -> list[float]: + bench = BENCHMARKS[self._name] + return [bench(self._size, self._random)] * loops + + +def add_cmdline_args(cmd: list[str], args) -> None: + if args.benchmark: + cmd.append(args.benchmark) + cmd.append(f"--size={args.size}") + cmd.append(f"--rng-seed={args.rng_seed}") + + +def add_parser_args(parser: argparse.ArgumentParser) -> None: + parser.add_argument( + "benchmark", + choices=BENCHMARKS, + nargs="?", + help="Can be any of: {0}".format(", ".join(BENCHMARKS)), + ) + parser.add_argument( + "--size", + type=int, + default=DEFAULT_SIZE, + help=f"Size of the lists to sort (default: {DEFAULT_SIZE})", + ) + parser.add_argument( + "--rng-seed", + type=int, + default=DEFAULT_RANDOM_SEED, + help=f"Random number generator seed (default: {DEFAULT_RANDOM_SEED})", + ) + + +DEFAULT_SIZE = 1 << 14 +DEFAULT_RANDOM_SEED = 0 +BENCHMARKS = { + "list_sort": list_sort, + "list_sort_descending": list_sort_descending, + "list_sort_ascending": list_sort_ascending, + "list_sort_ascending_exchanged": list_sort_ascending_exchanged, + "list_sort_ascending_random": list_sort_ascending_random, + "list_sort_ascending_one_percent": list_sort_ascending_one_percent, + "list_sort_duplicates": list_sort_duplicates, + "list_sort_equal": list_sort_equal, + "list_sort_worst_case": list_sort_worst_case, +} + +if __name__ == "__main__": + # This needs `pyperf` 3rd party library: + import pyperf + + runner = pyperf.Runner(add_cmdline_args=add_cmdline_args) + add_parser_args(runner.argparser) + args = runner.parse_args() + + runner.metadata["description"] = "Test `list.sort()` with different data" + runner.metadata["list_sort_size"] = args.size + runner.metadata["list_sort_random_seed"] = args.rng_seed + + if args.benchmark: + benchmarks = (args.benchmark,) + else: + benchmarks = sorted(BENCHMARKS) + for bench in benchmarks: + benchmark = Benchmark(bench, args.size, args.rng_seed) + runner.bench_time_func(bench, benchmark.run)