From 543724b972c27626d9e5bc6a644dcf2db22c96b2 Mon Sep 17 00:00:00 2001 From: "Miss Islington (bot)" <31488909+miss-islington@users.noreply.github.com> Date: Tue, 24 Nov 2020 22:47:17 -0800 Subject: [PATCH] Add doctests to the descriptor HowTo (GH-23500) (GH-23505) --- Doc/howto/descriptor.rst | 454 ++++++++++++++++++++++++++++++++++----- 1 file changed, 397 insertions(+), 57 deletions(-) diff --git a/Doc/howto/descriptor.rst b/Doc/howto/descriptor.rst index 8c6e90319a7f36..e94f0ef88416ed 100644 --- a/Doc/howto/descriptor.rst +++ b/Doc/howto/descriptor.rst @@ -43,21 +43,26 @@ Simple example: A descriptor that returns a constant ---------------------------------------------------- The :class:`Ten` class is a descriptor that always returns the constant ``10`` -from its :meth:`__get__` method:: +from its :meth:`__get__` method: +.. testcode:: class Ten: def __get__(self, obj, objtype=None): return 10 -To use the descriptor, it must be stored as a class variable in another class:: +To use the descriptor, it must be stored as a class variable in another class: + +.. testcode:: class A: x = 5 # Regular class attribute y = Ten() # Descriptor instance An interactive session shows the difference between normal attribute lookup -and descriptor lookup:: +and descriptor lookup: + +.. doctest:: >>> a = A() # Make an instance of class A >>> a.x # Normal attribute lookup @@ -83,7 +88,9 @@ Dynamic lookups --------------- Interesting descriptors typically run computations instead of returning -constants:: +constants: + +.. testcode:: import os @@ -131,7 +138,9 @@ the public attribute is accessed. In the following example, *age* is the public attribute and *_age* is the private attribute. When the public attribute is accessed, the descriptor logs -the lookup or update:: +the lookup or update: + +.. testcode:: import logging @@ -201,7 +210,9 @@ variable name was used. In this example, the :class:`Person` class has two descriptor instances, *name* and *age*. When the :class:`Person` class is defined, it makes a callback to :meth:`__set_name__` in *LoggedAccess* so that the field names can -be recorded, giving each descriptor its own *public_name* and *private_name*:: +be recorded, giving each descriptor its own *public_name* and *private_name*: + +.. testcode:: import logging @@ -236,7 +247,9 @@ be recorded, giving each descriptor its own *public_name* and *private_name*:: An interactive session shows that the :class:`Person` class has called :meth:`__set_name__` so that the field names would be recorded. Here -we call :func:`vars` to look up the descriptor without triggering it:: +we call :func:`vars` to look up the descriptor without triggering it: + +.. doctest:: >>> vars(vars(Person)['name']) {'public_name': 'name', 'private_name': '_name'} @@ -307,7 +320,9 @@ restrictions. If those restrictions aren't met, it raises an exception to prevent data corruption at its source. This :class:`Validator` class is both an :term:`abstract base class` and a -managed attribute descriptor:: +managed attribute descriptor: + +.. testcode:: from abc import ABC, abstractmethod @@ -347,7 +362,7 @@ Here are three practical data validation utilities: user-defined `predicate `_ as well. -:: +.. testcode:: class OneOf(Validator): @@ -400,10 +415,12 @@ Here are three practical data validation utilities: ) -Practical use -------------- +Practical application +--------------------- + +Here's how the data validators can be used in a real class: -Here's how the data validators can be used in a real class:: +.. testcode:: class Component: @@ -418,11 +435,26 @@ Here's how the data validators can be used in a real class:: The descriptors prevent invalid instances from being created:: - Component('WIDGET', 'metal', 5) # Allowed. - Component('Widget', 'metal', 5) # Blocked: 'Widget' is not all uppercase - Component('WIDGET', 'metle', 5) # Blocked: 'metle' is misspelled - Component('WIDGET', 'metal', -5) # Blocked: -5 is negative - Component('WIDGET', 'metal', 'V') # Blocked: 'V' isn't a number + >>> Component('Widget', 'metal', 5) # Blocked: 'Widget' is not all uppercase + Traceback (most recent call last): + ... + ValueError: Expected to be true for 'Widget' + + >>> Component('WIDGET', 'metle', 5) # Blocked: 'metle' is misspelled + Traceback (most recent call last): + ... + ValueError: Expected 'metle' to be one of {'metal', 'plastic', 'wood'} + + >>> Component('WIDGET', 'metal', -5) # Blocked: -5 is negative + Traceback (most recent call last): + ... + ValueError: Expected -5 to be at least 0 + >>> Component('WIDGET', 'metal', 'V') # Blocked: 'V' isn't a number + Traceback (most recent call last): + ... + TypeError: Expected 'V' to be an int or float + + >>> c = Component('WIDGET', 'metal', 5) # Allowed: The inputs are valid Technical Tutorial @@ -526,7 +558,9 @@ If a descriptor is found for ``a.x``, then it is invoked with: ``desc.__get__(a, type(a))``. The logic for a dotted lookup is in :meth:`object.__getattribute__`. Here is -a pure Python equivalent:: +a pure Python equivalent: + +.. testcode:: def object_getattribute(obj, name): "Emulate PyObject_GenericGetAttr() in Objects/object.c" @@ -546,9 +580,108 @@ a pure Python equivalent:: return cls_var # class variable raise AttributeError(name) + +.. testcode:: + :hide: + + # Test the fidelity of object_getattribute() by comparing it with the + # normal object.__getattribute__(). The former will be accessed by + # square brackets and the latter by the dot operator. + + class Object: + + def __getitem__(obj, name): + try: + return object_getattribute(obj, name) + except AttributeError: + if not hasattr(type(obj), '__getattr__'): + raise + return type(obj).__getattr__(obj, name) # __getattr__ + + class DualOperator(Object): + + x = 10 + + def __init__(self, z): + self.z = z + + @property + def p2(self): + return 2 * self.x + + @property + def p3(self): + return 3 * self.x + + def m5(self, y): + return 5 * y + + def m7(self, y): + return 7 * y + + def __getattr__(self, name): + return ('getattr_hook', self, name) + + class DualOperatorWithSlots: + + __getitem__ = Object.__getitem__ + + __slots__ = ['z'] + + x = 15 + + def __init__(self, z): + self.z = z + + @property + def p2(self): + return 2 * self.x + + def m5(self, y): + return 5 * y + + def __getattr__(self, name): + return ('getattr_hook', self, name) + + +.. doctest:: + :hide: + + >>> a = DualOperator(11) + >>> vars(a).update(p3 = '_p3', m7 = '_m7') + >>> a.x == a['x'] == 10 + True + >>> a.z == a['z'] == 11 + True + >>> a.p2 == a['p2'] == 20 + True + >>> a.p3 == a['p3'] == 30 + True + >>> a.m5(100) == a.m5(100) == 500 + True + >>> a.m7 == a['m7'] == '_m7' + True + >>> a.g == a['g'] == ('getattr_hook', a, 'g') + True + + >>> b = DualOperatorWithSlots(22) + >>> b.x == b['x'] == 15 + True + >>> b.z == b['z'] == 22 + True + >>> b.p2 == b['p2'] == 30 + True + >>> b.m5(200) == b['m5'](200) == 1000 + True + >>> b.g == b['g'] == ('getattr_hook', b, 'g') + True + + Interestingly, attribute lookup doesn't call :meth:`object.__getattribute__` directly. Instead, both the dot operator and the :func:`getattr` function -perform attribute lookup by way of a helper function:: +perform attribute lookup by way of a helper function: + +.. testcode:: def getattr_hook(obj, name): "Emulate slot_tp_getattr_hook() in Objects/typeobject.c" @@ -650,7 +783,9 @@ be used to implement an `object relational mapping The essential idea is that the data is stored in an external database. The Python instances only hold keys to the database's tables. Descriptors take -care of lookups or updates:: +care of lookups or updates: + +.. testcode:: class Field: @@ -665,8 +800,11 @@ care of lookups or updates:: conn.execute(self.store, [value, obj.key]) conn.commit() -We can use the :class:`Field` class to define "models" that describe the schema -for each table in a database:: +We can use the :class:`Field` class to define `models +`_ that describe the schema for +each table in a database: + +.. testcode:: class Movie: table = 'Movies' # Table name @@ -687,12 +825,41 @@ for each table in a database:: def __init__(self, key): self.key = key -An interactive session shows how data is retrieved from the database and how -it can be updated:: +To use the models, first connect to the database:: >>> import sqlite3 >>> conn = sqlite3.connect('entertainment.db') +An interactive session shows how data is retrieved from the database and how +it can be updated: + +.. testsetup:: + + song_data = [ + ('Country Roads', 'John Denver', 1972), + ('Me and Bobby McGee', 'Janice Joplin', 1971), + ('Coal Miners Daughter', 'Loretta Lynn', 1970), + ] + + movie_data = [ + ('Star Wars', 'George Lucas', 1977), + ('Jaws', 'Steven Spielberg', 1975), + ('Aliens', 'James Cameron', 1986), + ] + + import sqlite3 + + conn = sqlite3.connect(':memory:') + conn.execute('CREATE TABLE Music (title text, artist text, year integer);') + conn.execute('CREATE INDEX MusicNdx ON Music (title);') + conn.executemany('INSERT INTO Music VALUES (?, ?, ?);', song_data) + conn.execute('CREATE TABLE Movies (title text, director text, year integer);') + conn.execute('CREATE INDEX MovieNdx ON Music (title);') + conn.executemany('INSERT INTO Movies VALUES (?, ?, ?);', movie_data) + conn.commit() + +.. doctest:: + >>> Movie('Star Wars').director 'George Lucas' >>> jaws = Movie('Jaws') @@ -724,7 +891,9 @@ triggers a function call upon access to an attribute. Its signature is:: property(fget=None, fset=None, fdel=None, doc=None) -> property -The documentation shows a typical use to define a managed attribute ``x``:: +The documentation shows a typical use to define a managed attribute ``x``: + +.. testcode:: class C: def getx(self): return self.__x @@ -733,7 +902,9 @@ The documentation shows a typical use to define a managed attribute ``x``:: x = property(getx, setx, delx, "I'm the 'x' property.") To see how :func:`property` is implemented in terms of the descriptor protocol, -here is a pure Python equivalent:: +here is a pure Python equivalent: + +.. testcode:: class Property: "Emulate PyProperty_Type() in Objects/descrobject.c" @@ -772,6 +943,57 @@ here is a pure Python equivalent:: def deleter(self, fdel): return type(self)(self.fget, self.fset, fdel, self.__doc__) +.. testcode:: + :hide: + + # Verify the Property() emulation + + class CC: + def getx(self): + return self.__x + def setx(self, value): + self.__x = value + def delx(self): + del self.__x + x = Property(getx, setx, delx, "I'm the 'x' property.") + + # Now do it again but use the decorator style + + class CCC: + @Property + def x(self): + return self.__x + @x.setter + def x(self, value): + self.__x = value + @x.deleter + def x(self): + del self.__x + + +.. doctest:: + :hide: + + >>> cc = CC() + >>> hasattr(cc, 'x') + False + >>> cc.x = 33 + >>> cc.x + 33 + >>> del cc.x + >>> hasattr(cc, 'x') + False + + >>> ccc = CCC() + >>> hasattr(ccc, 'x') + False + >>> ccc.x = 333 + >>> ccc.x == 333 + True + >>> del ccc.x + >>> hasattr(ccc, 'x') + False + The :func:`property` builtin helps whenever a user interface has granted attribute access and then subsequent changes require the intervention of a method. @@ -780,7 +1002,9 @@ For instance, a spreadsheet class may grant access to a cell value through ``Cell('b10').value``. Subsequent improvements to the program require the cell to be recalculated on every access; however, the programmer does not want to affect existing client code accessing the attribute directly. The solution is -to wrap access to the value attribute in a property data descriptor:: +to wrap access to the value attribute in a property data descriptor: + +.. testcode:: class Cell: ... @@ -791,6 +1015,9 @@ to wrap access to the value attribute in a property data descriptor:: self.recalc() return self._value +Either the built-in :func:`property` or our :func:`Property` equivalent would +work in this example. + Functions and methods --------------------- @@ -804,7 +1031,9 @@ prepended to the other arguments. By convention, the instance is called *self* but could be called *this* or any other variable name. Methods can be created manually with :class:`types.MethodType` which is -roughly equivalent to:: +roughly equivalent to: + +.. testcode:: class MethodType: "Emulate Py_MethodType in Objects/classobject.c" @@ -821,7 +1050,9 @@ roughly equivalent to:: To support automatic creation of methods, functions include the :meth:`__get__` method for binding methods during attribute access. This means that functions are non-data descriptors that return bound methods -during dotted lookup from an instance. Here's how it works:: +during dotted lookup from an instance. Here's how it works: + +.. testcode:: class Function: ... @@ -833,13 +1064,17 @@ during dotted lookup from an instance. Here's how it works:: return MethodType(self, obj) Running the following class in the interpreter shows how the function -descriptor works in practice:: +descriptor works in practice: + +.. testcode:: class D: def f(self, x): return x -The function has a :term:`qualified name` attribute to support introspection:: +The function has a :term:`qualified name` attribute to support introspection: + +.. doctest:: >>> D.f.__qualname__ 'D.f' @@ -867,7 +1102,7 @@ Internally, the bound method stores the underlying function and the bound instance:: >>> d.f.__func__ - + >>> d.f.__self__ <__main__.D object at 0x1012e1f98> @@ -919,20 +1154,26 @@ It can be called either from an object or the class: ``s.erf(1.5) --> .9332`` o ``Sample.erf(1.5) --> .9332``. Since static methods return the underlying function with no changes, the -example calls are unexciting:: +example calls are unexciting: + +.. testcode:: class E: @staticmethod def f(x): print(x) +.. doctest:: + >>> E.f(3) 3 >>> E().f(3) 3 Using the non-data descriptor protocol, a pure Python version of -:func:`staticmethod` would look like this:: +:func:`staticmethod` would look like this: + +.. doctest:: class StaticMethod: "Emulate PyStaticMethod_Type() in Objects/funcobject.c" @@ -949,27 +1190,31 @@ Class methods Unlike static methods, class methods prepend the class reference to the argument list before calling the function. This format is the same -for whether the caller is an object or a class:: +for whether the caller is an object or a class: + +.. testcode:: class F: @classmethod def f(cls, x): return cls.__name__, x - >>> print(F.f(3)) +.. doctest:: + + >>> F.f(3) ('F', 3) - >>> print(F().f(3)) + >>> F().f(3) ('F', 3) This behavior is useful whenever the method only needs to have a class reference and does rely on data stored in a specific instance. One use for class methods is to create alternate class constructors. For example, the classmethod :func:`dict.fromkeys` creates a new dictionary from a list of -keys. The pure Python equivalent is:: +keys. The pure Python equivalent is: - class Dict: - ... +.. testcode:: + class Dict(dict): @classmethod def fromkeys(cls, iterable, value=None): "Emulate dict_fromkeys() in Objects/dictobject.c" @@ -978,13 +1223,17 @@ keys. The pure Python equivalent is:: d[key] = value return d -Now a new dictionary of unique keys can be constructed like this:: +Now a new dictionary of unique keys can be constructed like this: + +.. doctest:: >>> Dict.fromkeys('abracadabra') - {'a': None, 'r': None, 'b': None, 'c': None, 'd': None} + {'a': None, 'b': None, 'r': None, 'c': None, 'd': None} Using the non-data descriptor protocol, a pure Python version of -:func:`classmethod` would look like this:: +:func:`classmethod` would look like this: + +.. testcode:: class ClassMethod: "Emulate PyClassMethod_Type() in Objects/funcobject.c" @@ -999,9 +1248,31 @@ Using the non-data descriptor protocol, a pure Python version of return self.f.__get__(cls) return MethodType(self.f, cls) +.. testcode:: + :hide: + + # Verify the emulation works + class T: + @ClassMethod + def cm(cls, x, y): + return (cls, x, y) + +.. doctest:: + :hide: + + >>> T.cm(11, 22) + (, 11, 22) + + # Also call it from an instance + >>> t = T() + >>> t.cm(11, 22) + (, 11, 22) + The code path for ``hasattr(obj, '__get__')`` was added in Python 3.9 and makes it possible for :func:`classmethod` to support chained decorators. -For example, a classmethod and property could be chained together:: +For example, a classmethod and property could be chained together: + +.. testcode:: class G: @classmethod @@ -1009,6 +1280,12 @@ For example, a classmethod and property could be chained together:: def __doc__(cls): return f'A doc for {cls.__name__!r}' +.. doctest:: + + >>> G.__doc__ + "A doc for 'G'" + + Member objects and __slots__ ---------------------------- @@ -1017,11 +1294,15 @@ fixed-length array of slot values. From a user point of view that has several effects: 1. Provides immediate detection of bugs due to misspelled attribute -assignments. Only attribute names specified in ``__slots__`` are allowed:: +assignments. Only attribute names specified in ``__slots__`` are allowed: + +.. testcode:: class Vehicle: __slots__ = ('id_number', 'make', 'model') +.. doctest:: + >>> auto = Vehicle() >>> auto.id_nubmer = 'VYE483814LQEX' Traceback (most recent call last): @@ -1029,7 +1310,9 @@ assignments. Only attribute names specified in ``__slots__`` are allowed:: AttributeError: 'Vehicle' object has no attribute 'id_nubmer' 2. Helps create immutable objects where descriptors manage access to private -attributes stored in ``__slots__``:: +attributes stored in ``__slots__``: + +.. testcode:: class Immutable: @@ -1047,7 +1330,19 @@ attributes stored in ``__slots__``:: def name(self): # Read-only descriptor return self._name - mark = Immutable('Botany', 'Mark Watney') # Create an immutable instance +.. doctest:: + + >>> mark = Immutable('Botany', 'Mark Watney') + >>> mark.dept + 'Botany' + >>> mark.dept = 'Space Pirate' + Traceback (most recent call last): + ... + AttributeError: can't set attribute + >>> mark.location = 'Mars' + Traceback (most recent call last): + ... + AttributeError: 'Immutable' object has no attribute 'location' 3. Saves memory. On a 64-bit Linux build, an instance with two attributes takes 48 bytes with ``__slots__`` and 152 bytes without. This `flyweight @@ -1055,7 +1350,9 @@ design pattern `_ likely only matters when a large number of instances are going to be created. 4. Blocks tools like :func:`functools.cached_property` which require an -instance dictionary to function correctly:: +instance dictionary to function correctly: + +.. testcode:: from functools import cached_property @@ -1067,17 +1364,21 @@ instance dictionary to function correctly:: return 4 * sum((-1.0)**n / (2.0*n + 1.0) for n in reversed(range(100_000))) +.. doctest:: + >>> CP().pi Traceback (most recent call last): ... TypeError: No '__dict__' attribute on 'CP' instance to cache 'pi' property. -It's not possible to create an exact drop-in pure Python version of +It is not possible to create an exact drop-in pure Python version of ``__slots__`` because it requires direct access to C structures and control over object memory allocation. However, we can build a mostly faithful simulation where the actual C structure for slots is emulated by a private ``_slotvalues`` list. Reads and writes to that private structure are managed -by member descriptors:: +by member descriptors: + +.. testcode:: null = object() @@ -1114,7 +1415,9 @@ by member descriptors:: return f'' The :meth:`type.__new__` method takes care of adding member objects to class -variables:: +variables: + +.. testcode:: class Type(type): 'Simulate how the type metaclass adds member objects for slots' @@ -1129,7 +1432,9 @@ variables:: The :meth:`object.__new__` method takes care of creating instances that have slots instead of an instance dictionary. Here is a rough simulation in pure -Python:: +Python: + +.. testcode:: class Object: 'Simulate how object.__new__() allocates memory for __slots__' @@ -1161,7 +1466,9 @@ Python:: super().__delattr__(name) To use the simulation in a real class, just inherit from :class:`Object` and -set the :term:`metaclass` to :class:`Type`:: +set the :term:`metaclass` to :class:`Type`: + +.. testcode:: class H(Object, metaclass=Type): 'Instance variables stored in slots' @@ -1174,8 +1481,8 @@ set the :term:`metaclass` to :class:`Type`:: At this point, the metaclass has loaded member objects for *x* and *y*:: - >>> import pprint - >>> pprint.pp(dict(vars(H))) + >>> from pprint import pp + >>> pp(dict(vars(H))) {'__module__': '__main__', '__doc__': 'Instance variables stored in slots', 'slot_names': ['x', 'y'], @@ -1183,8 +1490,20 @@ At this point, the metaclass has loaded member objects for *x* and *y*:: 'x': , 'y': } +.. doctest:: + :hide: + + # We test this separately because the preceding section is not + # doctestable due to the hex memory address for the __init__ function + >>> isinstance(vars(H)['x'], Member) + True + >>> isinstance(vars(H)['y'], Member) + True + When instances are created, they have a ``slot_values`` list where the -attributes are stored:: +attributes are stored: + +.. doctest:: >>> h = H(10, 20) >>> vars(h) @@ -1193,9 +1512,30 @@ attributes are stored:: >>> vars(h) {'_slotvalues': [55, 20]} -Misspelled or unassigned attributes will raise an exception:: +Misspelled or unassigned attributes will raise an exception: + +.. doctest:: >>> h.xz Traceback (most recent call last): ... AttributeError: 'H' object has no attribute 'xz' + +.. doctest:: + :hide: + + # Examples for deleted attributes are not shown because this section + # is already a bit lengthy. We still test that code here. + >>> del h.x + >>> hasattr(h, 'x') + False + + # Also test the code for uninitialized slots + >>> class HU(Object, metaclass=Type): + ... slot_names = ['x', 'y'] + ... + >>> hu = HU() + >>> hasattr(hu, 'x') + False + >>> hasattr(hu, 'y') + False