-
-
Notifications
You must be signed in to change notification settings - Fork 30.6k
/
os.c
690 lines (600 loc) · 27.3 KB
/
os.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"
/* -----------------------------------------------------------
Initialization.
On windows initializes support for aligned allocation and
large OS pages (if MIMALLOC_LARGE_OS_PAGES is true).
----------------------------------------------------------- */
static mi_os_mem_config_t mi_os_mem_config = {
4096, // page size
0, // large page size (usually 2MiB)
4096, // allocation granularity
true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems)
false, // must free whole? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span)
true // has virtual reserve? (if true we can reserve virtual address space without using commit or physical memory)
};
bool _mi_os_has_overcommit(void) {
return mi_os_mem_config.has_overcommit;
}
bool _mi_os_has_virtual_reserve(void) {
return mi_os_mem_config.has_virtual_reserve;
}
// OS (small) page size
size_t _mi_os_page_size(void) {
return mi_os_mem_config.page_size;
}
// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB)
size_t _mi_os_large_page_size(void) {
return (mi_os_mem_config.large_page_size != 0 ? mi_os_mem_config.large_page_size : _mi_os_page_size());
}
bool _mi_os_use_large_page(size_t size, size_t alignment) {
// if we have access, check the size and alignment requirements
if (mi_os_mem_config.large_page_size == 0 || !mi_option_is_enabled(mi_option_allow_large_os_pages)) return false;
return ((size % mi_os_mem_config.large_page_size) == 0 && (alignment % mi_os_mem_config.large_page_size) == 0);
}
// round to a good OS allocation size (bounded by max 12.5% waste)
size_t _mi_os_good_alloc_size(size_t size) {
size_t align_size;
if (size < 512*MI_KiB) align_size = _mi_os_page_size();
else if (size < 2*MI_MiB) align_size = 64*MI_KiB;
else if (size < 8*MI_MiB) align_size = 256*MI_KiB;
else if (size < 32*MI_MiB) align_size = 1*MI_MiB;
else align_size = 4*MI_MiB;
if mi_unlikely(size >= (SIZE_MAX - align_size)) return size; // possible overflow?
return _mi_align_up(size, align_size);
}
void _mi_os_init(void) {
_mi_prim_mem_init(&mi_os_mem_config);
}
/* -----------------------------------------------------------
Util
-------------------------------------------------------------- */
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats);
static void* mi_align_up_ptr(void* p, size_t alignment) {
return (void*)_mi_align_up((uintptr_t)p, alignment);
}
static void* mi_align_down_ptr(void* p, size_t alignment) {
return (void*)_mi_align_down((uintptr_t)p, alignment);
}
/* -----------------------------------------------------------
aligned hinting
-------------------------------------------------------------- */
// On 64-bit systems, we can do efficient aligned allocation by using
// the 2TiB to 30TiB area to allocate those.
#if (MI_INTPTR_SIZE >= 8)
static mi_decl_cache_align _Atomic(uintptr_t)aligned_base;
// Return a MI_SEGMENT_SIZE aligned address that is probably available.
// If this returns NULL, the OS will determine the address but on some OS's that may not be
// properly aligned which can be more costly as it needs to be adjusted afterwards.
// For a size > 1GiB this always returns NULL in order to guarantee good ASLR randomization;
// (otherwise an initial large allocation of say 2TiB has a 50% chance to include (known) addresses
// in the middle of the 2TiB - 6TiB address range (see issue #372))
#define MI_HINT_BASE ((uintptr_t)2 << 40) // 2TiB start
#define MI_HINT_AREA ((uintptr_t)4 << 40) // upto 6TiB (since before win8 there is "only" 8TiB available to processes)
#define MI_HINT_MAX ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages)
void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size)
{
if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL;
size = _mi_align_up(size, MI_SEGMENT_SIZE);
if (size > 1*MI_GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(MI_HINT_AREA / 1<<30) = 1/4096.
#if (MI_SECURE>0)
size += MI_SEGMENT_SIZE; // put in `MI_SEGMENT_SIZE` virtual gaps between hinted blocks; this splits VLA's but increases guarded areas.
#endif
uintptr_t hint = mi_atomic_add_acq_rel(&aligned_base, size);
if (hint == 0 || hint > MI_HINT_MAX) { // wrap or initialize
uintptr_t init = MI_HINT_BASE;
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode
uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap());
init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % MI_HINT_AREA); // (randomly 20 bits)*4MiB == 0 to 4TiB
#endif
uintptr_t expected = hint + size;
mi_atomic_cas_strong_acq_rel(&aligned_base, &expected, init);
hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > MI_HINT_MAX but that is ok, it is a hint after all
}
if (hint%try_alignment != 0) return NULL;
return (void*)hint;
}
#else
void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) {
MI_UNUSED(try_alignment); MI_UNUSED(size);
return NULL;
}
#endif
/* -----------------------------------------------------------
Free memory
-------------------------------------------------------------- */
static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats);
static void mi_os_prim_free(void* addr, size_t size, bool still_committed, mi_stats_t* tld_stats) {
MI_UNUSED(tld_stats);
mi_assert_internal((size % _mi_os_page_size()) == 0);
if (addr == NULL || size == 0) return; // || _mi_os_is_huge_reserved(addr)
int err = _mi_prim_free(addr, size);
if (err != 0) {
_mi_warning_message("unable to free OS memory (error: %d (0x%x), size: 0x%zx bytes, address: %p)\n", err, err, size, addr);
}
mi_stats_t* stats = &_mi_stats_main;
if (still_committed) { _mi_stat_decrease(&stats->committed, size); }
_mi_stat_decrease(&stats->reserved, size);
}
void _mi_os_free_ex(void* addr, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* tld_stats) {
if (mi_memkind_is_os(memid.memkind)) {
size_t csize = _mi_os_good_alloc_size(size);
void* base = addr;
// different base? (due to alignment)
if (memid.mem.os.base != NULL) {
mi_assert(memid.mem.os.base <= addr);
mi_assert((uint8_t*)memid.mem.os.base + memid.mem.os.alignment >= (uint8_t*)addr);
base = memid.mem.os.base;
csize += ((uint8_t*)addr - (uint8_t*)memid.mem.os.base);
}
// free it
if (memid.memkind == MI_MEM_OS_HUGE) {
mi_assert(memid.is_pinned);
mi_os_free_huge_os_pages(base, csize, tld_stats);
}
else {
mi_os_prim_free(base, csize, still_committed, tld_stats);
}
}
else {
// nothing to do
mi_assert(memid.memkind < MI_MEM_OS);
}
}
void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* tld_stats) {
_mi_os_free_ex(p, size, true, memid, tld_stats);
}
/* -----------------------------------------------------------
Primitive allocation from the OS.
-------------------------------------------------------------- */
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* stats) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(is_zero != NULL);
mi_assert_internal(is_large != NULL);
if (size == 0) return NULL;
if (!commit) { allow_large = false; }
if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning
*is_zero = false;
void* p = NULL;
int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, is_zero, &p);
if (err != 0) {
_mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large);
}
mi_stat_counter_increase(stats->mmap_calls, 1);
if (p != NULL) {
_mi_stat_increase(&stats->reserved, size);
if (commit) {
_mi_stat_increase(&stats->committed, size);
// seems needed for asan (or `mimalloc-test-api` fails)
#ifdef MI_TRACK_ASAN
if (*is_zero) { mi_track_mem_defined(p,size); }
else { mi_track_mem_undefined(p,size); }
#endif
}
}
return p;
}
// Primitive aligned allocation from the OS.
// This function guarantees the allocated memory is aligned.
static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** base, mi_stats_t* stats) {
mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0));
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(is_large != NULL);
mi_assert_internal(is_zero != NULL);
mi_assert_internal(base != NULL);
if (!commit) allow_large = false;
if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL;
size = _mi_align_up(size, _mi_os_page_size());
// try first with a hint (this will be aligned directly on Win 10+ or BSD)
void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats);
if (p == NULL) return NULL;
// aligned already?
if (((uintptr_t)p % alignment) == 0) {
*base = p;
}
else {
// if not aligned, free it, overallocate, and unmap around it
// NOTE(sgross): this warning causes issues in Python tests
// _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit);
mi_os_prim_free(p, size, commit, stats);
if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
const size_t over_size = size + alignment;
if (mi_os_mem_config.must_free_whole) { // win32 virtualAlloc cannot free parts of an allocate block
// over-allocate uncommitted (virtual) memory
p = mi_os_prim_alloc(over_size, 1 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, is_zero, stats);
if (p == NULL) return NULL;
// set p to the aligned part in the full region
// note: this is dangerous on Windows as VirtualFree needs the actual base pointer
// this is handled though by having the `base` field in the memid's
*base = p; // remember the base
p = mi_align_up_ptr(p, alignment);
// explicitly commit only the aligned part
if (commit) {
_mi_os_commit(p, size, NULL, stats);
}
}
else { // mmap can free inside an allocation
// overallocate...
p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats);
if (p == NULL) return NULL;
// and selectively unmap parts around the over-allocated area. (noop on sbrk)
void* aligned_p = mi_align_up_ptr(p, alignment);
size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
size_t mid_size = _mi_align_up(size, _mi_os_page_size());
size_t post_size = over_size - pre_size - mid_size;
mi_assert_internal(pre_size < over_size&& post_size < over_size&& mid_size >= size);
if (pre_size > 0) { mi_os_prim_free(p, pre_size, commit, stats); }
if (post_size > 0) { mi_os_prim_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); }
// we can return the aligned pointer on `mmap` (and sbrk) systems
p = aligned_p;
*base = aligned_p; // since we freed the pre part, `*base == p`.
}
}
mi_assert_internal(p == NULL || (p != NULL && *base != NULL && ((uintptr_t)p % alignment) == 0));
return p;
}
/* -----------------------------------------------------------
OS API: alloc and alloc_aligned
----------------------------------------------------------- */
void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* tld_stats) {
MI_UNUSED(tld_stats);
*memid = _mi_memid_none();
mi_stats_t* stats = &_mi_stats_main;
if (size == 0) return NULL;
size = _mi_os_good_alloc_size(size);
bool os_is_large = false;
bool os_is_zero = false;
void* p = mi_os_prim_alloc(size, 0, true, false, &os_is_large, &os_is_zero, stats);
if (p != NULL) {
*memid = _mi_memid_create_os(true, os_is_zero, os_is_large);
}
return p;
}
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats)
{
MI_UNUSED(&_mi_os_get_aligned_hint); // suppress unused warnings
MI_UNUSED(tld_stats);
*memid = _mi_memid_none();
if (size == 0) return NULL;
size = _mi_os_good_alloc_size(size);
alignment = _mi_align_up(alignment, _mi_os_page_size());
bool os_is_large = false;
bool os_is_zero = false;
void* os_base = NULL;
void* p = mi_os_prim_alloc_aligned(size, alignment, commit, allow_large, &os_is_large, &os_is_zero, &os_base, &_mi_stats_main /*tld->stats*/ );
if (p != NULL) {
*memid = _mi_memid_create_os(commit, os_is_zero, os_is_large);
memid->mem.os.base = os_base;
memid->mem.os.alignment = alignment;
}
return p;
}
/* -----------------------------------------------------------
OS aligned allocation with an offset. This is used
for large alignments > MI_ALIGNMENT_MAX. We use a large mimalloc
page where the object can be aligned at an offset from the start of the segment.
As we may need to overallocate, we need to free such pointers using `mi_free_aligned`
to use the actual start of the memory region.
----------------------------------------------------------- */
void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats) {
mi_assert(offset <= MI_SEGMENT_SIZE);
mi_assert(offset <= size);
mi_assert((alignment % _mi_os_page_size()) == 0);
*memid = _mi_memid_none();
if (offset > MI_SEGMENT_SIZE) return NULL;
if (offset == 0) {
// regular aligned allocation
return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld_stats);
}
else {
// overallocate to align at an offset
const size_t extra = _mi_align_up(offset, alignment) - offset;
const size_t oversize = size + extra;
void* const start = _mi_os_alloc_aligned(oversize, alignment, commit, allow_large, memid, tld_stats);
if (start == NULL) return NULL;
void* const p = (uint8_t*)start + extra;
mi_assert(_mi_is_aligned((uint8_t*)p + offset, alignment));
// decommit the overallocation at the start
if (commit && extra > _mi_os_page_size()) {
_mi_os_decommit(start, extra, tld_stats);
}
return p;
}
}
/* -----------------------------------------------------------
OS memory API: reset, commit, decommit, protect, unprotect.
----------------------------------------------------------- */
// OS page align within a given area, either conservative (pages inside the area only),
// or not (straddling pages outside the area is possible)
static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) {
mi_assert(addr != NULL && size > 0);
if (newsize != NULL) *newsize = 0;
if (size == 0 || addr == NULL) return NULL;
// page align conservatively within the range
void* start = (conservative ? mi_align_up_ptr(addr, _mi_os_page_size())
: mi_align_down_ptr(addr, _mi_os_page_size()));
void* end = (conservative ? mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size())
: mi_align_up_ptr((uint8_t*)addr + size, _mi_os_page_size()));
ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start;
if (diff <= 0) return NULL;
mi_assert_internal((conservative && (size_t)diff <= size) || (!conservative && (size_t)diff >= size));
if (newsize != NULL) *newsize = (size_t)diff;
return start;
}
static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t* newsize) {
return mi_os_page_align_areax(true, addr, size, newsize);
}
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) {
MI_UNUSED(tld_stats);
mi_stats_t* stats = &_mi_stats_main;
if (is_zero != NULL) { *is_zero = false; }
_mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit
_mi_stat_counter_increase(&stats->commit_calls, 1);
// page align range
size_t csize;
void* start = mi_os_page_align_areax(false /* conservative? */, addr, size, &csize);
if (csize == 0) return true;
// commit
bool os_is_zero = false;
int err = _mi_prim_commit(start, csize, &os_is_zero);
if (err != 0) {
_mi_warning_message("cannot commit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
return false;
}
if (os_is_zero && is_zero != NULL) {
*is_zero = true;
mi_assert_expensive(mi_mem_is_zero(start, csize));
}
// note: the following seems required for asan (otherwise `mimalloc-test-stress` fails)
#ifdef MI_TRACK_ASAN
if (os_is_zero) { mi_track_mem_defined(start,csize); }
else { mi_track_mem_undefined(start,csize); }
#endif
return true;
}
static bool mi_os_decommit_ex(void* addr, size_t size, bool* needs_recommit, mi_stats_t* tld_stats) {
MI_UNUSED(tld_stats);
mi_stats_t* stats = &_mi_stats_main;
mi_assert_internal(needs_recommit!=NULL);
_mi_stat_decrease(&stats->committed, size);
// page align
size_t csize;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
if (csize == 0) return true;
// decommit
*needs_recommit = true;
int err = _mi_prim_decommit(start,csize,needs_recommit);
if (err != 0) {
_mi_warning_message("cannot decommit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
}
mi_assert_internal(err == 0);
return (err == 0);
}
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) {
bool needs_recommit;
return mi_os_decommit_ex(addr, size, &needs_recommit, tld_stats);
}
// Signal to the OS that the address range is no longer in use
// but may be used later again. This will release physical memory
// pages and reduce swapping while keeping the memory committed.
// We page align to a conservative area inside the range to reset.
bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
// page align conservatively within the range
size_t csize;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr)
_mi_stat_increase(&stats->reset, csize);
_mi_stat_counter_increase(&stats->reset_calls, 1);
#if (MI_DEBUG>1) && !MI_SECURE && !MI_TRACK_ENABLED // && !MI_TSAN
memset(start, 0, csize); // pretend it is eagerly reset
#endif
int err = _mi_prim_reset(start, csize);
if (err != 0) {
_mi_warning_message("cannot reset OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
}
return (err == 0);
}
// either resets or decommits memory, returns true if the memory needs
// to be recommitted if it is to be re-used later on.
bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats)
{
if (mi_option_get(mi_option_purge_delay) < 0) return false; // is purging allowed?
_mi_stat_counter_increase(&stats->purge_calls, 1);
_mi_stat_increase(&stats->purged, size);
if (mi_option_is_enabled(mi_option_purge_decommits) && // should decommit?
!_mi_preloading()) // don't decommit during preloading (unsafe)
{
bool needs_recommit = true;
mi_os_decommit_ex(p, size, &needs_recommit, stats);
return needs_recommit;
}
else {
if (allow_reset) { // this can sometimes be not allowed if the range is not fully committed
_mi_os_reset(p, size, stats);
}
return false; // needs no recommit
}
}
// either resets or decommits memory, returns true if the memory needs
// to be recommitted if it is to be re-used later on.
bool _mi_os_purge(void* p, size_t size, mi_stats_t * stats) {
return _mi_os_purge_ex(p, size, true, stats);
}
// Protect a region in memory to be not accessible.
static bool mi_os_protectx(void* addr, size_t size, bool protect) {
// page align conservatively within the range
size_t csize = 0;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
if (csize == 0) return false;
/*
if (_mi_os_is_huge_reserved(addr)) {
_mi_warning_message("cannot mprotect memory allocated in huge OS pages\n");
}
*/
int err = _mi_prim_protect(start,csize,protect);
if (err != 0) {
_mi_warning_message("cannot %s OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", (protect ? "protect" : "unprotect"), err, err, start, csize);
}
return (err == 0);
}
bool _mi_os_protect(void* addr, size_t size) {
return mi_os_protectx(addr, size, true);
}
bool _mi_os_unprotect(void* addr, size_t size) {
return mi_os_protectx(addr, size, false);
}
/* ----------------------------------------------------------------------------
Support for allocating huge OS pages (1Gib) that are reserved up-front
and possibly associated with a specific NUMA node. (use `numa_node>=0`)
-----------------------------------------------------------------------------*/
#define MI_HUGE_OS_PAGE_SIZE (MI_GiB)
#if (MI_INTPTR_SIZE >= 8)
// To ensure proper alignment, use our own area for huge OS pages
static mi_decl_cache_align _Atomic(uintptr_t) mi_huge_start; // = 0
// Claim an aligned address range for huge pages
static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
if (total_size != NULL) *total_size = 0;
const size_t size = pages * MI_HUGE_OS_PAGE_SIZE;
uintptr_t start = 0;
uintptr_t end = 0;
uintptr_t huge_start = mi_atomic_load_relaxed(&mi_huge_start);
do {
start = huge_start;
if (start == 0) {
// Initialize the start address after the 32TiB area
start = ((uintptr_t)32 << 40); // 32TiB virtual start address
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode
uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap());
start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF)); // (randomly 12bits)*1GiB == between 0 to 4TiB
#endif
}
end = start + size;
mi_assert_internal(end % MI_SEGMENT_SIZE == 0);
} while (!mi_atomic_cas_strong_acq_rel(&mi_huge_start, &huge_start, end));
if (total_size != NULL) *total_size = size;
return (uint8_t*)start;
}
#else
static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
MI_UNUSED(pages);
if (total_size != NULL) *total_size = 0;
return NULL;
}
#endif
// Allocate MI_SEGMENT_SIZE aligned huge pages
void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid) {
*memid = _mi_memid_none();
if (psize != NULL) *psize = 0;
if (pages_reserved != NULL) *pages_reserved = 0;
size_t size = 0;
uint8_t* start = mi_os_claim_huge_pages(pages, &size);
if (start == NULL) return NULL; // or 32-bit systems
// Allocate one page at the time but try to place them contiguously
// We allocate one page at the time to be able to abort if it takes too long
// or to at least allocate as many as available on the system.
mi_msecs_t start_t = _mi_clock_start();
size_t page = 0;
bool all_zero = true;
while (page < pages) {
// allocate a page
bool is_zero = false;
void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE);
void* p = NULL;
int err = _mi_prim_alloc_huge_os_pages(addr, MI_HUGE_OS_PAGE_SIZE, numa_node, &is_zero, &p);
if (!is_zero) { all_zero = false; }
if (err != 0) {
_mi_warning_message("unable to allocate huge OS page (error: %d (0x%x), address: %p, size: %zx bytes)\n", err, err, addr, MI_HUGE_OS_PAGE_SIZE);
break;
}
// Did we succeed at a contiguous address?
if (p != addr) {
// no success, issue a warning and break
if (p != NULL) {
_mi_warning_message("could not allocate contiguous huge OS page %zu at %p\n", page, addr);
mi_os_prim_free(p, MI_HUGE_OS_PAGE_SIZE, true, &_mi_stats_main);
}
break;
}
// success, record it
page++; // increase before timeout check (see issue #711)
_mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE);
_mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE);
// check for timeout
if (max_msecs > 0) {
mi_msecs_t elapsed = _mi_clock_end(start_t);
if (page >= 1) {
mi_msecs_t estimate = ((elapsed / (page+1)) * pages);
if (estimate > 2*max_msecs) { // seems like we are going to timeout, break
elapsed = max_msecs + 1;
}
}
if (elapsed > max_msecs) {
_mi_warning_message("huge OS page allocation timed out (after allocating %zu page(s))\n", page);
break;
}
}
}
mi_assert_internal(page*MI_HUGE_OS_PAGE_SIZE <= size);
if (pages_reserved != NULL) { *pages_reserved = page; }
if (psize != NULL) { *psize = page * MI_HUGE_OS_PAGE_SIZE; }
if (page != 0) {
mi_assert(start != NULL);
*memid = _mi_memid_create_os(true /* is committed */, all_zero, true /* is_large */);
memid->memkind = MI_MEM_OS_HUGE;
mi_assert(memid->is_pinned);
#ifdef MI_TRACK_ASAN
if (all_zero) { mi_track_mem_defined(start,size); }
#endif
}
return (page == 0 ? NULL : start);
}
// free every huge page in a range individually (as we allocated per page)
// note: needed with VirtualAlloc but could potentially be done in one go on mmap'd systems.
static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats) {
if (p==NULL || size==0) return;
uint8_t* base = (uint8_t*)p;
while (size >= MI_HUGE_OS_PAGE_SIZE) {
mi_os_prim_free(base, MI_HUGE_OS_PAGE_SIZE, true, stats);
size -= MI_HUGE_OS_PAGE_SIZE;
base += MI_HUGE_OS_PAGE_SIZE;
}
}
/* ----------------------------------------------------------------------------
Support NUMA aware allocation
-----------------------------------------------------------------------------*/
_Atomic(size_t) _mi_numa_node_count; // = 0 // cache the node count
size_t _mi_os_numa_node_count_get(void) {
size_t count = mi_atomic_load_acquire(&_mi_numa_node_count);
if (count <= 0) {
long ncount = mi_option_get(mi_option_use_numa_nodes); // given explicitly?
if (ncount > 0) {
count = (size_t)ncount;
}
else {
count = _mi_prim_numa_node_count(); // or detect dynamically
if (count == 0) count = 1;
}
mi_atomic_store_release(&_mi_numa_node_count, count); // save it
_mi_verbose_message("using %zd numa regions\n", count);
}
return count;
}
int _mi_os_numa_node_get(mi_os_tld_t* tld) {
MI_UNUSED(tld);
size_t numa_count = _mi_os_numa_node_count();
if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0
// never more than the node count and >= 0
size_t numa_node = _mi_prim_numa_node();
if (numa_node >= numa_count) { numa_node = numa_node % numa_count; }
return (int)numa_node;
}