-
-
Notifications
You must be signed in to change notification settings - Fork 30.7k
/
asyncio-eventloop.rst
1893 lines (1265 loc) · 62.9 KB
/
asyncio-eventloop.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
.. currentmodule:: asyncio
.. _asyncio-event-loop:
==========
Event Loop
==========
**Source code:** :source:`Lib/asyncio/events.py`,
:source:`Lib/asyncio/base_events.py`
------------------------------------
.. rubric:: Preface
The event loop is the core of every asyncio application.
Event loops run asynchronous tasks and callbacks, perform network
IO operations, and run subprocesses.
Application developers should typically use the high-level asyncio functions,
such as :func:`asyncio.run`, and should rarely need to reference the loop
object or call its methods. This section is intended mostly for authors
of lower-level code, libraries, and frameworks, who need finer control over
the event loop behavior.
.. rubric:: Obtaining the Event Loop
The following low-level functions can be used to get, set, or create
an event loop:
.. function:: get_running_loop()
Return the running event loop in the current OS thread.
Raise a :exc:`RuntimeError` if there is no running event loop.
This function can only be called from a coroutine or a callback.
.. versionadded:: 3.7
.. function:: get_event_loop()
Get the current event loop.
When called from a coroutine or a callback (e.g. scheduled with
call_soon or similar API), this function will always return the
running event loop.
If there is no running event loop set, the function will return
the result of the ``get_event_loop_policy().get_event_loop()`` call.
Because this function has rather complex behavior (especially
when custom event loop policies are in use), using the
:func:`get_running_loop` function is preferred to :func:`get_event_loop`
in coroutines and callbacks.
As noted above, consider using the higher-level :func:`asyncio.run` function,
instead of using these lower level functions to manually create and close an
event loop.
.. deprecated:: 3.12
Deprecation warning is emitted if there is no current event loop.
In some future Python release this will become an error.
.. function:: set_event_loop(loop)
Set *loop* as the current event loop for the current OS thread.
.. function:: new_event_loop()
Create and return a new event loop object.
Note that the behaviour of :func:`get_event_loop`, :func:`set_event_loop`,
and :func:`new_event_loop` functions can be altered by
:ref:`setting a custom event loop policy <asyncio-policies>`.
.. rubric:: Contents
This documentation page contains the following sections:
* The `Event Loop Methods`_ section is the reference documentation of
the event loop APIs;
* The `Callback Handles`_ section documents the :class:`Handle` and
:class:`TimerHandle` instances which are returned from scheduling
methods such as :meth:`loop.call_soon` and :meth:`loop.call_later`;
* The `Server Objects`_ section documents types returned from
event loop methods like :meth:`loop.create_server`;
* The `Event Loop Implementations`_ section documents the
:class:`SelectorEventLoop` and :class:`ProactorEventLoop` classes;
* The `Examples`_ section showcases how to work with some event
loop APIs.
.. _asyncio-event-loop-methods:
Event Loop Methods
==================
Event loops have **low-level** APIs for the following:
.. contents::
:depth: 1
:local:
Running and stopping the loop
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. method:: loop.run_until_complete(future)
Run until the *future* (an instance of :class:`Future`) has
completed.
If the argument is a :ref:`coroutine object <coroutine>` it
is implicitly scheduled to run as a :class:`asyncio.Task`.
Return the Future's result or raise its exception.
.. method:: loop.run_forever()
Run the event loop until :meth:`stop` is called.
If :meth:`stop` is called before :meth:`run_forever()` is called,
the loop will poll the I/O selector once with a timeout of zero,
run all callbacks scheduled in response to I/O events (and
those that were already scheduled), and then exit.
If :meth:`stop` is called while :meth:`run_forever` is running,
the loop will run the current batch of callbacks and then exit.
Note that new callbacks scheduled by callbacks will not run in this
case; instead, they will run the next time :meth:`run_forever` or
:meth:`run_until_complete` is called.
.. method:: loop.stop()
Stop the event loop.
.. method:: loop.is_running()
Return ``True`` if the event loop is currently running.
.. method:: loop.is_closed()
Return ``True`` if the event loop was closed.
.. method:: loop.close()
Close the event loop.
The loop must not be running when this function is called.
Any pending callbacks will be discarded.
This method clears all queues and shuts down the executor, but does
not wait for the executor to finish.
This method is idempotent and irreversible. No other methods
should be called after the event loop is closed.
.. coroutinemethod:: loop.shutdown_asyncgens()
Schedule all currently open :term:`asynchronous generator` objects to
close with an :meth:`~agen.aclose()` call. After calling this method,
the event loop will issue a warning if a new asynchronous generator
is iterated. This should be used to reliably finalize all scheduled
asynchronous generators.
Note that there is no need to call this function when
:func:`asyncio.run` is used.
Example::
try:
loop.run_forever()
finally:
loop.run_until_complete(loop.shutdown_asyncgens())
loop.close()
.. versionadded:: 3.6
.. coroutinemethod:: loop.shutdown_default_executor(timeout=None)
Schedule the closure of the default executor and wait for it to join all of
the threads in the :class:`~concurrent.futures.ThreadPoolExecutor`.
Once this method has been called,
using the default executor with :meth:`loop.run_in_executor`
will raise a :exc:`RuntimeError`.
The *timeout* parameter specifies the amount of time
(in :class:`float` seconds) the executor will be given to finish joining.
With the default, ``None``,
the executor is allowed an unlimited amount of time.
If the *timeout* is reached, a :exc:`RuntimeWarning` is emitted
and the default executor is terminated
without waiting for its threads to finish joining.
.. note::
Do not call this method when using :func:`asyncio.run`,
as the latter handles default executor shutdown automatically.
.. versionadded:: 3.9
.. versionchanged:: 3.12
Added the *timeout* parameter.
Scheduling callbacks
^^^^^^^^^^^^^^^^^^^^
.. method:: loop.call_soon(callback, *args, context=None)
Schedule the *callback* :term:`callback` to be called with
*args* arguments at the next iteration of the event loop.
Return an instance of :class:`asyncio.Handle`,
which can be used later to cancel the callback.
Callbacks are called in the order in which they are registered.
Each callback will be called exactly once.
The optional keyword-only *context* argument specifies a
custom :class:`contextvars.Context` for the *callback* to run in.
Callbacks use the current context when no *context* is provided.
Unlike :meth:`call_soon_threadsafe`, this method is not thread-safe.
.. method:: loop.call_soon_threadsafe(callback, *args, context=None)
A thread-safe variant of :meth:`call_soon`. When scheduling callbacks from
another thread, this function *must* be used, since :meth:`call_soon` is not
thread-safe.
Raises :exc:`RuntimeError` if called on a loop that's been closed.
This can happen on a secondary thread when the main application is
shutting down.
See the :ref:`concurrency and multithreading <asyncio-multithreading>`
section of the documentation.
.. versionchanged:: 3.7
The *context* keyword-only parameter was added. See :pep:`567`
for more details.
.. _asyncio-pass-keywords:
.. note::
Most :mod:`asyncio` scheduling functions don't allow passing
keyword arguments. To do that, use :func:`functools.partial`::
# will schedule "print("Hello", flush=True)"
loop.call_soon(
functools.partial(print, "Hello", flush=True))
Using partial objects is usually more convenient than using lambdas,
as asyncio can render partial objects better in debug and error
messages.
.. _asyncio-delayed-calls:
Scheduling delayed callbacks
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Event loop provides mechanisms to schedule callback functions
to be called at some point in the future. Event loop uses monotonic
clocks to track time.
.. method:: loop.call_later(delay, callback, *args, context=None)
Schedule *callback* to be called after the given *delay*
number of seconds (can be either an int or a float).
An instance of :class:`asyncio.TimerHandle` is returned which can
be used to cancel the callback.
*callback* will be called exactly once. If two callbacks are
scheduled for exactly the same time, the order in which they
are called is undefined.
The optional positional *args* will be passed to the callback when
it is called. If you want the callback to be called with keyword
arguments use :func:`functools.partial`.
An optional keyword-only *context* argument allows specifying a
custom :class:`contextvars.Context` for the *callback* to run in.
The current context is used when no *context* is provided.
.. versionchanged:: 3.7
The *context* keyword-only parameter was added. See :pep:`567`
for more details.
.. versionchanged:: 3.8
In Python 3.7 and earlier with the default event loop implementation,
the *delay* could not exceed one day.
This has been fixed in Python 3.8.
.. method:: loop.call_at(when, callback, *args, context=None)
Schedule *callback* to be called at the given absolute timestamp
*when* (an int or a float), using the same time reference as
:meth:`loop.time`.
This method's behavior is the same as :meth:`call_later`.
An instance of :class:`asyncio.TimerHandle` is returned which can
be used to cancel the callback.
.. versionchanged:: 3.7
The *context* keyword-only parameter was added. See :pep:`567`
for more details.
.. versionchanged:: 3.8
In Python 3.7 and earlier with the default event loop implementation,
the difference between *when* and the current time could not exceed
one day. This has been fixed in Python 3.8.
.. method:: loop.time()
Return the current time, as a :class:`float` value, according to
the event loop's internal monotonic clock.
.. note::
.. versionchanged:: 3.8
In Python 3.7 and earlier timeouts (relative *delay* or absolute *when*)
should not exceed one day. This has been fixed in Python 3.8.
.. seealso::
The :func:`asyncio.sleep` function.
Creating Futures and Tasks
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. method:: loop.create_future()
Create an :class:`asyncio.Future` object attached to the event loop.
This is the preferred way to create Futures in asyncio. This lets
third-party event loops provide alternative implementations of
the Future object (with better performance or instrumentation).
.. versionadded:: 3.5.2
.. method:: loop.create_task(coro, *, name=None, context=None)
Schedule the execution of :ref:`coroutine <coroutine>` *coro*.
Return a :class:`Task` object.
Third-party event loops can use their own subclass of :class:`Task`
for interoperability. In this case, the result type is a subclass
of :class:`Task`.
If the *name* argument is provided and not ``None``, it is set as
the name of the task using :meth:`Task.set_name`.
An optional keyword-only *context* argument allows specifying a
custom :class:`contextvars.Context` for the *coro* to run in.
The current context copy is created when no *context* is provided.
.. versionchanged:: 3.8
Added the *name* parameter.
.. versionchanged:: 3.11
Added the *context* parameter.
.. method:: loop.set_task_factory(factory)
Set a task factory that will be used by
:meth:`loop.create_task`.
If *factory* is ``None`` the default task factory will be set.
Otherwise, *factory* must be a *callable* with the signature matching
``(loop, coro, context=None)``, where *loop* is a reference to the active
event loop, and *coro* is a coroutine object. The callable
must return a :class:`asyncio.Future`-compatible object.
.. method:: loop.get_task_factory()
Return a task factory or ``None`` if the default one is in use.
Opening network connections
^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. coroutinemethod:: loop.create_connection(protocol_factory, \
host=None, port=None, *, ssl=None, \
family=0, proto=0, flags=0, sock=None, \
local_addr=None, server_hostname=None, \
ssl_handshake_timeout=None, \
ssl_shutdown_timeout=None, \
happy_eyeballs_delay=None, interleave=None, \
all_errors=False)
Open a streaming transport connection to a given
address specified by *host* and *port*.
The socket family can be either :py:data:`~socket.AF_INET` or
:py:data:`~socket.AF_INET6` depending on *host* (or the *family*
argument, if provided).
The socket type will be :py:data:`~socket.SOCK_STREAM`.
*protocol_factory* must be a callable returning an
:ref:`asyncio protocol <asyncio-protocol>` implementation.
This method will try to establish the connection in the background.
When successful, it returns a ``(transport, protocol)`` pair.
The chronological synopsis of the underlying operation is as follows:
#. The connection is established and a :ref:`transport <asyncio-transport>`
is created for it.
#. *protocol_factory* is called without arguments and is expected to
return a :ref:`protocol <asyncio-protocol>` instance.
#. The protocol instance is coupled with the transport by calling its
:meth:`~BaseProtocol.connection_made` method.
#. A ``(transport, protocol)`` tuple is returned on success.
The created transport is an implementation-dependent bidirectional
stream.
Other arguments:
* *ssl*: if given and not false, a SSL/TLS transport is created
(by default a plain TCP transport is created). If *ssl* is
a :class:`ssl.SSLContext` object, this context is used to create
the transport; if *ssl* is :const:`True`, a default context returned
from :func:`ssl.create_default_context` is used.
.. seealso:: :ref:`SSL/TLS security considerations <ssl-security>`
* *server_hostname* sets or overrides the hostname that the target
server's certificate will be matched against. Should only be passed
if *ssl* is not ``None``. By default the value of the *host* argument
is used. If *host* is empty, there is no default and you must pass a
value for *server_hostname*. If *server_hostname* is an empty
string, hostname matching is disabled (which is a serious security
risk, allowing for potential man-in-the-middle attacks).
* *family*, *proto*, *flags* are the optional address family, protocol
and flags to be passed through to getaddrinfo() for *host* resolution.
If given, these should all be integers from the corresponding
:mod:`socket` module constants.
* *happy_eyeballs_delay*, if given, enables Happy Eyeballs for this
connection. It should
be a floating-point number representing the amount of time in seconds
to wait for a connection attempt to complete, before starting the next
attempt in parallel. This is the "Connection Attempt Delay" as defined
in :rfc:`8305`. A sensible default value recommended by the RFC is ``0.25``
(250 milliseconds).
* *interleave* controls address reordering when a host name resolves to
multiple IP addresses.
If ``0`` or unspecified, no reordering is done, and addresses are
tried in the order returned by :meth:`getaddrinfo`. If a positive integer
is specified, the addresses are interleaved by address family, and the
given integer is interpreted as "First Address Family Count" as defined
in :rfc:`8305`. The default is ``0`` if *happy_eyeballs_delay* is not
specified, and ``1`` if it is.
* *sock*, if given, should be an existing, already connected
:class:`socket.socket` object to be used by the transport.
If *sock* is given, none of *host*, *port*, *family*, *proto*, *flags*,
*happy_eyeballs_delay*, *interleave*
and *local_addr* should be specified.
.. note::
The *sock* argument transfers ownership of the socket to the
transport created. To close the socket, call the transport's
:meth:`~asyncio.BaseTransport.close` method.
* *local_addr*, if given, is a ``(local_host, local_port)`` tuple used
to bind the socket locally. The *local_host* and *local_port*
are looked up using ``getaddrinfo()``, similarly to *host* and *port*.
* *ssl_handshake_timeout* is (for a TLS connection) the time in seconds
to wait for the TLS handshake to complete before aborting the connection.
``60.0`` seconds if ``None`` (default).
* *ssl_shutdown_timeout* is the time in seconds to wait for the SSL shutdown
to complete before aborting the connection. ``30.0`` seconds if ``None``
(default).
* *all_errors* determines what exceptions are raised when a connection cannot
be created. By default, only a single ``Exception`` is raised: the first
exception if there is only one or all errors have same message, or a single
``OSError`` with the error messages combined. When ``all_errors`` is ``True``,
an ``ExceptionGroup`` will be raised containing all exceptions (even if there
is only one).
.. versionchanged:: 3.5
Added support for SSL/TLS in :class:`ProactorEventLoop`.
.. versionchanged:: 3.6
The socket option :py:data:`~socket.TCP_NODELAY` is set by default
for all TCP connections.
.. versionchanged:: 3.7
Added the *ssl_handshake_timeout* parameter.
.. versionchanged:: 3.8
Added the *happy_eyeballs_delay* and *interleave* parameters.
Happy Eyeballs Algorithm: Success with Dual-Stack Hosts.
When a server's IPv4 path and protocol are working, but the server's
IPv6 path and protocol are not working, a dual-stack client
application experiences significant connection delay compared to an
IPv4-only client. This is undesirable because it causes the
dual-stack client to have a worse user experience. This document
specifies requirements for algorithms that reduce this user-visible
delay and provides an algorithm.
For more information: https://datatracker.ietf.org/doc/html/rfc6555
.. versionchanged:: 3.11
Added the *ssl_shutdown_timeout* parameter.
.. versionchanged:: 3.12
*all_errors* was added.
.. seealso::
The :func:`open_connection` function is a high-level alternative
API. It returns a pair of (:class:`StreamReader`, :class:`StreamWriter`)
that can be used directly in async/await code.
.. coroutinemethod:: loop.create_datagram_endpoint(protocol_factory, \
local_addr=None, remote_addr=None, *, \
family=0, proto=0, flags=0, \
reuse_port=None, \
allow_broadcast=None, sock=None)
Create a datagram connection.
The socket family can be either :py:data:`~socket.AF_INET`,
:py:data:`~socket.AF_INET6`, or :py:data:`~socket.AF_UNIX`,
depending on *host* (or the *family* argument, if provided).
The socket type will be :py:data:`~socket.SOCK_DGRAM`.
*protocol_factory* must be a callable returning a
:ref:`protocol <asyncio-protocol>` implementation.
A tuple of ``(transport, protocol)`` is returned on success.
Other arguments:
* *local_addr*, if given, is a ``(local_host, local_port)`` tuple used
to bind the socket locally. The *local_host* and *local_port*
are looked up using :meth:`getaddrinfo`.
* *remote_addr*, if given, is a ``(remote_host, remote_port)`` tuple used
to connect the socket to a remote address. The *remote_host* and
*remote_port* are looked up using :meth:`getaddrinfo`.
* *family*, *proto*, *flags* are the optional address family, protocol
and flags to be passed through to :meth:`getaddrinfo` for *host*
resolution. If given, these should all be integers from the
corresponding :mod:`socket` module constants.
* *reuse_port* tells the kernel to allow this endpoint to be bound to the
same port as other existing endpoints are bound to, so long as they all
set this flag when being created. This option is not supported on Windows
and some Unixes. If the :py:data:`~socket.SO_REUSEPORT` constant is not
defined then this capability is unsupported.
* *allow_broadcast* tells the kernel to allow this endpoint to send
messages to the broadcast address.
* *sock* can optionally be specified in order to use a preexisting,
already connected, :class:`socket.socket` object to be used by the
transport. If specified, *local_addr* and *remote_addr* should be omitted
(must be :const:`None`).
.. note::
The *sock* argument transfers ownership of the socket to the
transport created. To close the socket, call the transport's
:meth:`~asyncio.BaseTransport.close` method.
See :ref:`UDP echo client protocol <asyncio-udp-echo-client-protocol>` and
:ref:`UDP echo server protocol <asyncio-udp-echo-server-protocol>` examples.
.. versionchanged:: 3.4.4
The *family*, *proto*, *flags*, *reuse_address*, *reuse_port*,
*allow_broadcast*, and *sock* parameters were added.
.. versionchanged:: 3.8.1
The *reuse_address* parameter is no longer supported, as using
:py:data:`~sockets.SO_REUSEADDR` poses a significant security concern for
UDP. Explicitly passing ``reuse_address=True`` will raise an exception.
When multiple processes with differing UIDs assign sockets to an
identical UDP socket address with ``SO_REUSEADDR``, incoming packets can
become randomly distributed among the sockets.
For supported platforms, *reuse_port* can be used as a replacement for
similar functionality. With *reuse_port*,
:py:data:`~sockets.SO_REUSEPORT` is used instead, which specifically
prevents processes with differing UIDs from assigning sockets to the same
socket address.
.. versionchanged:: 3.8
Added support for Windows.
.. versionchanged:: 3.11
The *reuse_address* parameter, disabled since Python 3.9.0, 3.8.1,
3.7.6 and 3.6.10, has been entirely removed.
.. coroutinemethod:: loop.create_unix_connection(protocol_factory, \
path=None, *, ssl=None, sock=None, \
server_hostname=None, ssl_handshake_timeout=None, \
ssl_shutdown_timeout=None)
Create a Unix connection.
The socket family will be :py:data:`~socket.AF_UNIX`; socket
type will be :py:data:`~socket.SOCK_STREAM`.
A tuple of ``(transport, protocol)`` is returned on success.
*path* is the name of a Unix domain socket and is required,
unless a *sock* parameter is specified. Abstract Unix sockets,
:class:`str`, :class:`bytes`, and :class:`~pathlib.Path` paths are
supported.
See the documentation of the :meth:`loop.create_connection` method
for information about arguments to this method.
.. availability:: Unix.
.. versionchanged:: 3.7
Added the *ssl_handshake_timeout* parameter.
The *path* parameter can now be a :term:`path-like object`.
.. versionchanged:: 3.11
Added the *ssl_shutdown_timeout* parameter.
Creating network servers
^^^^^^^^^^^^^^^^^^^^^^^^
.. coroutinemethod:: loop.create_server(protocol_factory, \
host=None, port=None, *, \
family=socket.AF_UNSPEC, \
flags=socket.AI_PASSIVE, \
sock=None, backlog=100, ssl=None, \
reuse_address=None, reuse_port=None, \
ssl_handshake_timeout=None, \
ssl_shutdown_timeout=None, \
start_serving=True)
Create a TCP server (socket type :data:`~socket.SOCK_STREAM`) listening
on *port* of the *host* address.
Returns a :class:`Server` object.
Arguments:
* *protocol_factory* must be a callable returning a
:ref:`protocol <asyncio-protocol>` implementation.
* The *host* parameter can be set to several types which determine where
the server would be listening:
- If *host* is a string, the TCP server is bound to a single network
interface specified by *host*.
- If *host* is a sequence of strings, the TCP server is bound to all
network interfaces specified by the sequence.
- If *host* is an empty string or ``None``, all interfaces are
assumed and a list of multiple sockets will be returned (most likely
one for IPv4 and another one for IPv6).
* The *port* parameter can be set to specify which port the server should
listen on. If ``0`` or ``None`` (the default), a random unused port will
be selected (note that if *host* resolves to multiple network interfaces,
a different random port will be selected for each interface).
* *family* can be set to either :data:`socket.AF_INET` or
:data:`~socket.AF_INET6` to force the socket to use IPv4 or IPv6.
If not set, the *family* will be determined from host name
(defaults to :data:`~socket.AF_UNSPEC`).
* *flags* is a bitmask for :meth:`getaddrinfo`.
* *sock* can optionally be specified in order to use a preexisting
socket object. If specified, *host* and *port* must not be specified.
.. note::
The *sock* argument transfers ownership of the socket to the
server created. To close the socket, call the server's
:meth:`~asyncio.Server.close` method.
* *backlog* is the maximum number of queued connections passed to
:meth:`~socket.socket.listen` (defaults to 100).
* *ssl* can be set to an :class:`~ssl.SSLContext` instance to enable
TLS over the accepted connections.
* *reuse_address* tells the kernel to reuse a local socket in
``TIME_WAIT`` state, without waiting for its natural timeout to
expire. If not specified will automatically be set to ``True`` on
Unix.
* *reuse_port* tells the kernel to allow this endpoint to be bound to the
same port as other existing endpoints are bound to, so long as they all
set this flag when being created. This option is not supported on
Windows.
* *ssl_handshake_timeout* is (for a TLS server) the time in seconds to wait
for the TLS handshake to complete before aborting the connection.
``60.0`` seconds if ``None`` (default).
* *ssl_shutdown_timeout* is the time in seconds to wait for the SSL shutdown
to complete before aborting the connection. ``30.0`` seconds if ``None``
(default).
* *start_serving* set to ``True`` (the default) causes the created server
to start accepting connections immediately. When set to ``False``,
the user should await on :meth:`Server.start_serving` or
:meth:`Server.serve_forever` to make the server to start accepting
connections.
.. versionchanged:: 3.5
Added support for SSL/TLS in :class:`ProactorEventLoop`.
.. versionchanged:: 3.5.1
The *host* parameter can be a sequence of strings.
.. versionchanged:: 3.6
Added *ssl_handshake_timeout* and *start_serving* parameters.
The socket option :py:data:`~socket.TCP_NODELAY` is set by default
for all TCP connections.
.. versionchanged:: 3.11
Added the *ssl_shutdown_timeout* parameter.
.. seealso::
The :func:`start_server` function is a higher-level alternative API
that returns a pair of :class:`StreamReader` and :class:`StreamWriter`
that can be used in an async/await code.
.. coroutinemethod:: loop.create_unix_server(protocol_factory, path=None, \
*, sock=None, backlog=100, ssl=None, \
ssl_handshake_timeout=None, \
ssl_shutdown_timeout=None, \
start_serving=True)
Similar to :meth:`loop.create_server` but works with the
:py:data:`~socket.AF_UNIX` socket family.
*path* is the name of a Unix domain socket, and is required,
unless a *sock* argument is provided. Abstract Unix sockets,
:class:`str`, :class:`bytes`, and :class:`~pathlib.Path` paths
are supported.
See the documentation of the :meth:`loop.create_server` method
for information about arguments to this method.
.. availability:: Unix.
.. versionchanged:: 3.7
Added the *ssl_handshake_timeout* and *start_serving* parameters.
The *path* parameter can now be a :class:`~pathlib.Path` object.
.. versionchanged:: 3.11
Added the *ssl_shutdown_timeout* parameter.
.. coroutinemethod:: loop.connect_accepted_socket(protocol_factory, \
sock, *, ssl=None, ssl_handshake_timeout=None, \
ssl_shutdown_timeout=None)
Wrap an already accepted connection into a transport/protocol pair.
This method can be used by servers that accept connections outside
of asyncio but that use asyncio to handle them.
Parameters:
* *protocol_factory* must be a callable returning a
:ref:`protocol <asyncio-protocol>` implementation.
* *sock* is a preexisting socket object returned from
:meth:`socket.accept <socket.socket.accept>`.
.. note::
The *sock* argument transfers ownership of the socket to the
transport created. To close the socket, call the transport's
:meth:`~asyncio.BaseTransport.close` method.
* *ssl* can be set to an :class:`~ssl.SSLContext` to enable SSL over
the accepted connections.
* *ssl_handshake_timeout* is (for an SSL connection) the time in seconds to
wait for the SSL handshake to complete before aborting the connection.
``60.0`` seconds if ``None`` (default).
* *ssl_shutdown_timeout* is the time in seconds to wait for the SSL shutdown
to complete before aborting the connection. ``30.0`` seconds if ``None``
(default).
Returns a ``(transport, protocol)`` pair.
.. versionadded:: 3.5.3
.. versionchanged:: 3.7
Added the *ssl_handshake_timeout* parameter.
.. versionchanged:: 3.11
Added the *ssl_shutdown_timeout* parameter.
Transferring files
^^^^^^^^^^^^^^^^^^
.. coroutinemethod:: loop.sendfile(transport, file, \
offset=0, count=None, *, fallback=True)
Send a *file* over a *transport*. Return the total number of bytes
sent.
The method uses high-performance :meth:`os.sendfile` if available.
*file* must be a regular file object opened in binary mode.
*offset* tells from where to start reading the file. If specified,
*count* is the total number of bytes to transmit as opposed to
sending the file until EOF is reached. File position is always updated,
even when this method raises an error, and
:meth:`file.tell() <io.IOBase.tell>` can be used to obtain the actual
number of bytes sent.
*fallback* set to ``True`` makes asyncio to manually read and send
the file when the platform does not support the sendfile system call
(e.g. Windows or SSL socket on Unix).
Raise :exc:`SendfileNotAvailableError` if the system does not support
the *sendfile* syscall and *fallback* is ``False``.
.. versionadded:: 3.7
TLS Upgrade
^^^^^^^^^^^
.. coroutinemethod:: loop.start_tls(transport, protocol, \
sslcontext, *, server_side=False, \
server_hostname=None, ssl_handshake_timeout=None, \
ssl_shutdown_timeout=None)
Upgrade an existing transport-based connection to TLS.
Create a TLS coder/decoder instance and insert it between the *transport*
and the *protocol*. The coder/decoder implements both *transport*-facing
protocol and *protocol*-facing transport.
Return the created two-interface instance. After *await*, the *protocol*
must stop using the original *transport* and communicate with the returned
object only because the coder caches *protocol*-side data and sporadically
exchanges extra TLS session packets with *transport*.
Parameters:
* *transport* and *protocol* instances that methods like
:meth:`~loop.create_server` and
:meth:`~loop.create_connection` return.
* *sslcontext*: a configured instance of :class:`~ssl.SSLContext`.
* *server_side* pass ``True`` when a server-side connection is being
upgraded (like the one created by :meth:`~loop.create_server`).
* *server_hostname*: sets or overrides the host name that the target
server's certificate will be matched against.
* *ssl_handshake_timeout* is (for a TLS connection) the time in seconds to
wait for the TLS handshake to complete before aborting the connection.
``60.0`` seconds if ``None`` (default).
* *ssl_shutdown_timeout* is the time in seconds to wait for the SSL shutdown
to complete before aborting the connection. ``30.0`` seconds if ``None``
(default).
.. versionadded:: 3.7
.. versionchanged:: 3.11
Added the *ssl_shutdown_timeout* parameter.
Watching file descriptors
^^^^^^^^^^^^^^^^^^^^^^^^^
.. method:: loop.add_reader(fd, callback, *args)
Start monitoring the *fd* file descriptor for read availability and
invoke *callback* with the specified arguments once *fd* is available for
reading.
.. method:: loop.remove_reader(fd)
Stop monitoring the *fd* file descriptor for read availability. Returns
``True`` if *fd* was previously being monitored for reads.
.. method:: loop.add_writer(fd, callback, *args)
Start monitoring the *fd* file descriptor for write availability and
invoke *callback* with the specified arguments once *fd* is available for
writing.
Use :func:`functools.partial` :ref:`to pass keyword arguments
<asyncio-pass-keywords>` to *callback*.
.. method:: loop.remove_writer(fd)
Stop monitoring the *fd* file descriptor for write availability. Returns
``True`` if *fd* was previously being monitored for writes.
See also :ref:`Platform Support <asyncio-platform-support>` section
for some limitations of these methods.
Working with socket objects directly
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In general, protocol implementations that use transport-based APIs
such as :meth:`loop.create_connection` and :meth:`loop.create_server`
are faster than implementations that work with sockets directly.
However, there are some use cases when performance is not critical, and
working with :class:`~socket.socket` objects directly is more
convenient.
.. coroutinemethod:: loop.sock_recv(sock, nbytes)
Receive up to *nbytes* from *sock*. Asynchronous version of
:meth:`socket.recv() <socket.socket.recv>`.
Return the received data as a bytes object.
*sock* must be a non-blocking socket.
.. versionchanged:: 3.7
Even though this method was always documented as a coroutine
method, releases before Python 3.7 returned a :class:`Future`.
Since Python 3.7 this is an ``async def`` method.
.. coroutinemethod:: loop.sock_recv_into(sock, buf)
Receive data from *sock* into the *buf* buffer. Modeled after the blocking
:meth:`socket.recv_into() <socket.socket.recv_into>` method.
Return the number of bytes written to the buffer.
*sock* must be a non-blocking socket.
.. versionadded:: 3.7
.. coroutinemethod:: loop.sock_recvfrom(sock, bufsize)
Receive a datagram of up to *bufsize* from *sock*. Asynchronous version of
:meth:`socket.recvfrom() <socket.socket.recvfrom>`.
Return a tuple of (received data, remote address).