-
-
Notifications
You must be signed in to change notification settings - Fork 50
/
test_laplace.py
134 lines (109 loc) · 4.31 KB
/
test_laplace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2024 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pymc as pm
import pytest
import pymc_experimental as pmx
@pytest.mark.filterwarnings(
"ignore:hessian will stop negating the output in a future version of PyMC.\n"
+ "To suppress this warning set `negate_output=False`:FutureWarning",
)
def test_laplace():
# Example originates from Bayesian Data Analyses, 3rd Edition
# By Andrew Gelman, John Carlin, Hal Stern, David Dunson,
# Aki Vehtari, and Donald Rubin.
# See section. 4.1
y = np.array([2642, 3503, 4358], dtype=np.float64)
n = y.size
draws = 100000
with pm.Model() as m:
logsigma = pm.Uniform("logsigma", 1, 100)
mu = pm.Uniform("mu", -10000, 10000)
yobs = pm.Normal("y", mu=mu, sigma=pm.math.exp(logsigma), observed=y)
vars = [mu, logsigma]
idata = pmx.fit(
method="laplace",
vars=vars,
model=m,
draws=draws,
random_seed=173300,
)
assert idata.posterior["mu"].shape == (1, draws)
assert idata.posterior["logsigma"].shape == (1, draws)
assert idata.observed_data["y"].shape == (n,)
assert idata.fit["mean_vector"].shape == (len(vars),)
assert idata.fit["covariance_matrix"].shape == (len(vars), len(vars))
bda_map = [y.mean(), np.log(y.std())]
bda_cov = np.array([[y.var() / n, 0], [0, 1 / (2 * n)]])
assert np.allclose(idata.fit["mean_vector"].values, bda_map)
assert np.allclose(idata.fit["covariance_matrix"].values, bda_cov, atol=1e-4)
@pytest.mark.filterwarnings(
"ignore:hessian will stop negating the output in a future version of PyMC.\n"
+ "To suppress this warning set `negate_output=False`:FutureWarning",
)
def test_laplace_only_fit():
# Example originates from Bayesian Data Analyses, 3rd Edition
# By Andrew Gelman, John Carlin, Hal Stern, David Dunson,
# Aki Vehtari, and Donald Rubin.
# See section. 4.1
y = np.array([2642, 3503, 4358], dtype=np.float64)
n = y.size
with pm.Model() as m:
logsigma = pm.Uniform("logsigma", 1, 100)
mu = pm.Uniform("mu", -10000, 10000)
yobs = pm.Normal("y", mu=mu, sigma=pm.math.exp(logsigma), observed=y)
vars = [mu, logsigma]
idata = pmx.fit(
method="laplace",
vars=vars,
draws=None,
model=m,
random_seed=173300,
)
assert idata.fit["mean_vector"].shape == (len(vars),)
assert idata.fit["covariance_matrix"].shape == (len(vars), len(vars))
bda_map = [y.mean(), np.log(y.std())]
bda_cov = np.array([[y.var() / n, 0], [0, 1 / (2 * n)]])
assert np.allclose(idata.fit["mean_vector"].values, bda_map)
assert np.allclose(idata.fit["covariance_matrix"].values, bda_cov, atol=1e-4)
@pytest.mark.filterwarnings(
"ignore:hessian will stop negating the output in a future version of PyMC.\n"
+ "To suppress this warning set `negate_output=False`:FutureWarning",
)
def test_laplace_subset_of_rv(recwarn):
# Example originates from Bayesian Data Analyses, 3rd Edition
# By Andrew Gelman, John Carlin, Hal Stern, David Dunson,
# Aki Vehtari, and Donald Rubin.
# See section. 4.1
y = np.array([2642, 3503, 4358], dtype=np.float64)
n = y.size
with pm.Model() as m:
logsigma = pm.Uniform("logsigma", 1, 100)
mu = pm.Uniform("mu", -10000, 10000)
yobs = pm.Normal("y", mu=mu, sigma=pm.math.exp(logsigma), observed=y)
vars = [mu]
idata = pmx.fit(
method="laplace",
vars=vars,
draws=None,
model=m,
random_seed=173300,
)
assert len(recwarn) == 3
w = recwarn.pop(UserWarning)
assert issubclass(w.category, UserWarning)
assert (
str(w.message)
== "Number of variables in vars does not eqaul the number of variables in the model."
)