-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patherrant_score.py
574 lines (515 loc) · 22.5 KB
/
errant_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
from copy import deepcopy
import math
from tqdm import tqdm
def get_ref(edits, src):
cnt = 0
src = src.split()
e_s = src
for edit in edits:
s_idx, e_idx, rep_tok = edit
s_idx = cnt + s_idx
e_idx = cnt + e_idx
e_s = e_s[:s_idx] + rep_tok.split() + e_s[e_idx:] if rep_tok else e_s[:s_idx] + e_s[e_idx:]
cnt += len(rep_tok.split()) - (e_idx - s_idx)
return " ".join(e_s)
def compute_weight_edits(editSeq, gold, source, cand, ref, w_t, scorer=None, sent_level=False):
weight_edits = {}
editSeq = sorted(editSeq, key=lambda x: (x[0], x[1]))
assert cand == get_ref(editSeq, source), f"src: {source}\nref: {cand}\nref_s: {get_ref(editSeq, source)}\nedits: {editSeq}"
gold = sorted(gold, key=lambda x: (x[0], x[1]))
assert ref == get_ref(gold, source), f"src: {source}\nref: {ref}\nref_s: {get_ref(gold, source)}\nedits: {gold}"
edits = list(set(editSeq) | set(gold))
edits = sorted(edits, key=lambda x: (x[0], x[1]))
for i, edit in enumerate(edits):
edit_s = [edit]
edit_s = sorted(edit_s, key=lambda x: (x[0], x[1]))
ref_s = get_ref(edit_s, source)
if w_t == "self":
weight_edits[edit] = 1
elif w_t == "bartscore":
s1, s2 = scorer.score([ref, ref], [source, ref_s], batch_size=2)
weight_edits[edit] = abs(s1 - s2)
elif w_t == "bertscore":
s1 = scorer.score([source], [ref])[-1]
s1 = s1[0].item()
s2 = scorer.score([ref_s], [ref])[-1]
s2 = s2[0].item()
weight_edits[edit] = abs(s1 - s2)
if sent_level:
w_sum = sum(v for v in weight_edits.values())
if w_sum == 0:
weight_edits = {k: 1 / len(weight_edits) for k in weight_edits.keys()}
return weight_edits
def errant_batch_pre_rec_f1(editSeq, gold, source, candidate, ref, scorer, args, beta=0.5):
correct = matchSeq(editSeq, gold, ignore_whitespace_casing=False)
#print(f"correct {correct} sys_edit {editSeq} gold_edit {gold}")
weight_editSeq = compute_weight_edits(editSeq, source, candidate, args.scorer, args.direction, scorer)
weight_gold = compute_weight_edits(gold, source, ref, args.scorer, args.direction, scorer)
if not editSeq:
p = 1.0
else:
p = sum(weight_editSeq[c] for c in correct)
if not gold:
r = 1.0
else:
r = sum(weight_gold[c] for c in correct)
if not beta * beta * p + r:
f1 = 0.0
else:
f1 = (1.0 + beta * beta) * p * r / (beta * beta * p + r)
return (p, r, f1)
def matchSeq(editSeq, gold_edits, ignore_whitespace_casing=False, verbose=False):
m = []
goldSeq = deepcopy(gold_edits)
last_index = 0
CInsCDel = False
CInsWDel = False
CDelWIns = False
for e in editSeq:
# print(e)
# print("====")
for i in range(last_index, len(goldSeq)):
g = goldSeq[i]
# print(g)
if matchEdit(e, g, ignore_whitespace_casing):
# print(f"* {e}")
m.append(e)
last_index = i + 1
return m
def matchEdit(e, g, ignore_whitespace_casing=False):
# start offset
if e[0] != g[0]:
return False
# end offset
if e[1] != g[1]:
return False
# original string
if e[2] != g[2]:
return False
return True
# if __name__ == "__main__":
# print(matchSeq([(3, 3, ','), (19, 19, ','), (21, 22, '')], [(3, 3, ','), (7, 8, 'testing'), (19, 19, ',')]
# ))
def errant_load_annotation(hyp_m2, ref_m2):
hyp_m2 = open(hyp_m2, encoding="utf8").read().strip().split("\n\n")
ref_m2 = open(ref_m2, encoding="utf8").read().strip().split("\n\n")
assert len(hyp_m2) == len(ref_m2)
sources, gold_edits, sys_edits = [], [], []
for sent_id, sent in enumerate(zip(hyp_m2, ref_m2)):
# Simplify the edits into lists of lists
hyp_edits = simplify_edits(sent[0])
ref_edits = simplify_edits(sent[1])
# Process the edits for detection/correction based on args
hyp_dict = process_edits(hyp_edits)
ref_dict = process_edits(ref_edits)
hyp_dict = [k for v in hyp_dict.values() for k in v.keys() if k != (-1, -1, '-NONE-')]
ref_dict = {key: [k for k in value.keys() if k != (-1, -1, '-NONE-')] for key, value in ref_dict.items()}
# original sentence for logging
original_sentence = sent[0][2:].split("\nA")[0]
sources.append(original_sentence)
gold_edits.append(ref_dict)
sys_edits.append(hyp_dict)
return sources, gold_edits, sys_edits
def simplify_edits(sent):
out_edits = []
# Get the edit lines from an m2 block.
edits = sent.split("\n")[1:]
# Loop through the edits
for edit in edits:
# Preprocessing
edit = edit[2:].split("|||") # Ignore "A " then split.
span = edit[0].split()
start = int(span[0])
end = int(span[1])
cat = edit[1]
cor = edit[2]
coder = int(edit[-1])
out_edit = [start, end, cat, cor, coder]
out_edits.append(out_edit)
return out_edits
def process_edits(edits, dt=False, ds=False, single=False, filt=None, multi=False, cse=False):
if filt is None:
filt = []
coder_dict = {}
# Add an explicit noop edit if there are no edits.
if not edits: edits = [[-1, -1, "noop", "-NONE-", 0]]
# Loop through the edits
for edit in edits:
# Name the edit elements for clarity
start = edit[0]
end = edit[1]
cat = edit[2]
cor = edit[3]
coder = edit[4]
# Add the coder to the coder_dict if necessary
if coder not in coder_dict: coder_dict[coder] = {}
# Optionally apply filters based on args
# 1. UNK type edits are only useful for detection, not correction.
if not dt and not ds and cat == "UNK": continue
# 2. Only evaluate single token edits; i.e. 0:1, 1:0 or 1:1
if single and (end-start >= 2 or len(cor.split()) >= 2): continue
# 3. Only evaluate multi token edits; i.e. 2+:n or n:2+
if multi and end-start < 2 and len(cor.split()) < 2: continue
# 4. If there is a filter, ignore the specified error types
if filt and cat in filt: continue
# Token Based Detection
if dt:
# Preserve noop edits.
if start == -1:
if (start, start) in coder_dict[coder].keys():
coder_dict[coder][(start, start)].append(cat)
else:
coder_dict[coder][(start, start)] = [cat]
# Insertions defined as affecting the token on the right
elif start == end and start >= 0:
if (start, start+1) in coder_dict[coder].keys():
coder_dict[coder][(start, start+1)].append(cat)
else:
coder_dict[coder][(start, start+1)] = [cat]
# Edit spans are split for each token in the range.
else:
for tok_id in range(start, end):
if (tok_id, tok_id+1) in coder_dict[coder].keys():
coder_dict[coder][(tok_id, tok_id+1)].append(cat)
else:
coder_dict[coder][(tok_id, tok_id+1)] = [cat]
# Span Based Detection
elif ds:
if (start, end) in coder_dict[coder].keys():
coder_dict[coder][(start, end)].append(cat)
else:
coder_dict[coder][(start, end)] = [cat]
# Span Based Correction
else:
# With error type classification
if cse:
if (start, end, cat, cor) in coder_dict[coder].keys():
coder_dict[coder][(start, end, cat, cor)].append(cat)
else:
coder_dict[coder][(start, end, cat, cor)] = [cat]
# Without error type classification
else:
if (start, end, cor) in coder_dict[coder].keys():
coder_dict[coder][(start, end, cor)].append(cat)
else:
coder_dict[coder][(start, end, cor)] = [cat]
return coder_dict
def evaluate_edits(hyp_dict, ref_dict, best, sent_id, original_sentence, beta=0.5, verbose=False):
# Verbose output: display the original sentence
if verbose:
print('{:-^40}'.format(""))
print("Original sentence " + str(sent_id) + ": " + original_sentence)
# Store the best sentence level scores and hyp+ref combination IDs
# best_f is initialised as -1 cause 0 is a valid result.
best_tp, best_fp, best_fn, best_f, best_hyp, best_ref = 0, 0, 0, -1, 0, 0
best_cat = {}
# Compare each hyp and ref combination
for hyp_id in hyp_dict.keys():
for ref_id in ref_dict.keys():
# Get the local counts for the current combination.
tp, fp, fn, cat_dict = compareEdits(hyp_dict[hyp_id], ref_dict[ref_id])
# Compute the local sentence scores (for verbose output only)
loc_p, loc_r, loc_f = computeFScore(tp, fp, fn, beta)
# Compute the global sentence scores
p, r, f = computeFScore(
tp+best["tp"], fp+best["fp"], fn+best["fn"], beta)
# Save the scores if they are better in terms of:
# 1. Higher F-score
# 2. Same F-score, higher TP
# 3. Same F-score and TP, lower FP
# 4. Same F-score, TP and FP, lower FN
if (f > best_f) or \
(f == best_f and tp > best_tp) or \
(f == best_f and tp == best_tp and fp < best_fp) or \
(f == best_f and tp == best_tp and fp == best_fp and fn < best_fn):
best_tp, best_fp, best_fn = tp, fp, fn
best_f, best_hyp, best_ref = f, hyp_id, ref_id
best_cat = cat_dict
# Verbose output
if verbose:
# Prepare verbose output edits.
hyp_verb = list(sorted(hyp_dict[hyp_id].keys()))
ref_verb = list(sorted(ref_dict[ref_id].keys()))
# add categories
# hyp_dict[hyp_id] looks like (0, 1, "str")
# hyp_dict[hyp_id][h] is a list, always length one, of the corresponding category
hyp_verb = [h + (hyp_dict[hyp_id][h][0],) for h in hyp_verb]
ref_verb = [r + (ref_dict[ref_id][r][0],) for r in ref_verb]
# Ignore noop edits
if not hyp_verb or hyp_verb[0][0] == -1: hyp_verb = []
if not ref_verb or ref_verb[0][0] == -1: ref_verb = []
# Print verbose info
print('{:-^40}'.format(""))
print("SENTENCE "+str(sent_id)+" - HYP "+str(hyp_id)+" - REF "+str(ref_id))
print("HYPOTHESIS EDITS :", hyp_verb)
print("REFERENCE EDITS :", ref_verb)
print("Local TP/FP/FN :", str(tp), str(fp), str(fn))
print("Local P/R/F"+str(beta)+" :", str(loc_p), str(loc_r), str(loc_f))
print("Global TP/FP/FN :", str(tp+best["tp"]), str(fp+best["fp"]), str(fn+best["fn"]))
print("Global P/R/F"+str(beta)+" :", str(p), str(r), str(f))
# Verbose output: display the best hyp+ref combination
if verbose:
print('{:-^40}'.format(""))
print("^^ HYP "+str(best_hyp)+", REF "+str(best_ref)+" chosen for sentence "+str(sent_id))
print("Local results:")
header = ["Category", "TP", "FP", "FN"]
body = [[k, *v] for k, v in best_cat.items()]
print_table([header] + body)
# Save the best TP, FP and FNs as a dict, and return this and the best_cat dict
best_dict = {"tp":best_tp, "fp":best_fp, "fn":best_fn}
return best_dict, best_cat
def compareEdits(hyp_edits, ref_edits):
tp = 0 # True Positives
fp = 0 # False Positives
fn = 0 # False Negatives
cat_dict = {} # {cat: [tp, fp, fn], ...}
for h_edit, h_cats in hyp_edits.items():
# noop hyp edits cannot be TP or FP
if h_cats[0] == "noop": continue
# TRUE POSITIVES
if h_edit in ref_edits.keys():
# On occasion, multiple tokens at same span.
for h_cat in ref_edits[h_edit]: # Use ref dict for TP
tp += 1
# Each dict value [TP, FP, FN]
if h_cat in cat_dict.keys():
cat_dict[h_cat][0] += 1
else:
cat_dict[h_cat] = [1, 0, 0]
# FALSE POSITIVES
else:
# On occasion, multiple tokens at same span.
for h_cat in h_cats:
fp += 1
# Each dict value [TP, FP, FN]
if h_cat in cat_dict.keys():
cat_dict[h_cat][1] += 1
else:
cat_dict[h_cat] = [0, 1, 0]
for r_edit, r_cats in ref_edits.items():
# noop ref edits cannot be FN
if r_cats[0] == "noop": continue
# FALSE NEGATIVES
if r_edit not in hyp_edits.keys():
# On occasion, multiple tokens at same span.
for r_cat in r_cats:
fn += 1
# Each dict value [TP, FP, FN]
if r_cat in cat_dict.keys():
cat_dict[r_cat][2] += 1
else:
cat_dict[r_cat] = [0, 0, 1]
return tp, fp, fn, cat_dict
def comp_p(a, b):
if b:
p = a / b
else:
p = 1.0
return p
def comp_r(c, g):
if g:
r = c / g
else:
r = 1.0
return r
def comp_f1(p, r, beta):
if beta*beta*p+r:
f = (1.0+beta*beta) * p * r / (beta*beta*p+r)
else:
f = 0.0
return f
def print_table(table):
longest_cols = [
(max([len(str(row[i])) for row in table]) + 3)
for i in range(len(table[0]))
]
row_format = "".join(["{:>" + str(longest_col) + "}" for longest_col in longest_cols])
for row in table:
print(row_format.format(*row))
def computeFScore(tp, fp, fn, beta):
p = float(tp)/(tp+fp) if fp else 1.0
r = float(tp)/(tp+fn) if fn else 1.0
f = float((1+(beta**2))*p*r)/(((beta**2)*p)+r) if p+r else 0.0
return round(p, 4), round(r, 4), round(f, 4)
def print_results(best, dt=False, ds=False, cse=False, cat=None, best_cats=None, beta=0.5):
# Prepare output title.
if dt: title = " Token-Based Detection "
elif ds: title = " Span-Based Detection "
elif cse: title = " Span-Based Correction + Classification "
else: title = " Span-Based Correction "
# Category Scores
if cat:
best_cats = processCategories(best_cats, cat)
print("")
print('{:=^66}'.format(title))
print("Category".ljust(14), "TP".ljust(8), "FP".ljust(8), "FN".ljust(8),
"P".ljust(8), "R".ljust(8), "F"+str(beta))
for cat, cnts in sorted(best_cats.items()):
cat_p, cat_r, cat_f = computeFScore(cnts[0], cnts[1], cnts[2], beta)
print(cat.ljust(14), str(cnts[0]).ljust(8), str(cnts[1]).ljust(8),
str(cnts[2]).ljust(8), str(cat_p).ljust(8), str(cat_r).ljust(8), cat_f)
return list(computeFScore(best["tp"], best["fp"], best["fn"], beta))
def processCategories(cat_dict, setting):
# Otherwise, do some processing.
proc_cat_dict = {}
for cat, cnt in cat_dict.items():
if cat == "UNK":
proc_cat_dict[cat] = cnt
continue
# M, U, R or UNK combined only.
if setting == 1:
if cat[0] in proc_cat_dict.keys():
proc_cat_dict[cat[0]] = [x+y for x, y in zip(proc_cat_dict[cat[0]], cnt)]
else:
proc_cat_dict[cat[0]] = cnt
# Everything without M, U or R.
elif setting == 2:
if cat[2:] in proc_cat_dict.keys():
proc_cat_dict[cat[2:]] = [x+y for x, y in zip(proc_cat_dict[cat[2:]], cnt)]
else:
proc_cat_dict[cat[2:]] = cnt
# All error category combinations
else:
return cat_dict
return proc_cat_dict
def batch_multi_pre_rec_f1_errant(candidates, sources, system_edits, gold_edits, references, scorer, scorer_type,
max_unchanged_words=2, beta=0.5, ignore_whitespace_casing=False, verbose=False,
very_verbose=False):
assert len(candidates) == len(sources) == len(gold_edits)
stat_correct = 0.0
stat_proposed = 0.0
stat_gold = 0.0
i = 0
for candidate, source, refs, sys_set, golds_set in tqdm(zip(candidates, sources, references,
system_edits, gold_edits)):
i = i + 1
# Find measures maximizing current cumulative F1; local: curent annotator only
sqbeta = beta * beta
chosen_ann = -1
f1_max = -math.inf
argmax_correct = 0.0
argmax_proposed = 0.0
argmax_gold = 0.0
max_stat_correct = -math.inf
min_stat_proposed = math.inf
min_stat_gold = math.inf
for annotator, gold in golds_set.items():
editSeq = sys_set
correct = matchSeq(editSeq, gold, ignore_whitespace_casing, verbose)
#gold = [(g[0], g[1], g[2], g[-1][0]) for g in gold]
weight_edits = compute_weight_edits(editSeq, gold, source, candidate, refs[annotator], scorer_type, scorer)
# local cumulative counts, P, R and F1
stat_correct_local = stat_correct + sum(weight_edits[c] for c in correct)
stat_proposed_local = stat_proposed + sum(weight_edits[e] for e in editSeq)
stat_gold_local = stat_gold + sum(weight_edits[g] for g in gold)
p_local = comp_p(stat_correct_local, stat_proposed_local)
r_local = comp_r(stat_correct_local, stat_gold_local)
f1_local = comp_f1(p_local, r_local, beta)
if f1_max < f1_local or \
(f1_max == f1_local and max_stat_correct < stat_correct_local) or \
(
f1_max == f1_local and max_stat_correct == stat_correct_local and min_stat_proposed + sqbeta * min_stat_gold > stat_proposed_local + sqbeta * stat_gold_local):
chosen_ann = annotator
f1_max = f1_local
max_stat_correct = stat_correct_local
min_stat_proposed = stat_proposed_local
min_stat_gold = stat_gold_local
argmax_correct = sum(weight_edits[c] for c in correct)
argmax_proposed = sum(weight_edits[e] for e in editSeq)
argmax_gold = sum(weight_edits[g] for g in gold)
if verbose:
print(">> Chosen Annotator for line", i, ":", chosen_ann)
print("")
stat_correct += argmax_correct
stat_proposed += argmax_proposed
stat_gold += argmax_gold
if stat_proposed:
p = stat_correct / stat_proposed
else:
p = 1.0
if stat_gold:
r = stat_correct / stat_gold
else:
r = 1.0
if beta * beta * p + r:
f1 = (1.0 + beta * beta) * p * r / (beta * beta * p + r)
else:
f1 = 0.0
if verbose:
print("CORRECT EDITS :", int(stat_correct))
print("PROPOSED EDITS :", int(stat_proposed))
print("GOLD EDITS :", int(stat_gold))
print("P =", p)
print("R =", r)
print("F_%.1f =" % beta, f1)
return (p, r, f1)
def batch_multi_pre_rec_f1_sent_errant(candidates, sources, system_edits, gold_edits, references, scorer, scorer_type,
max_unchanged_words=2, beta=0.5, ignore_whitespace_casing=False, verbose=False,
very_verbose=False):
assert len(candidates) == len(sources) == len(gold_edits) == len(system_edits)
stat_correct = 0.0
stat_proposed = 0.0
stat_gold = 0.0
i = 0
for candidate, source, refs, editSeq, golds_set in zip(candidates, sources, references,
system_edits, gold_edits):
i = i + 1
# Find measures maximizing current cumulative F1; local: curent annotator only
sqbeta = beta * beta
chosen_ann = -1
f1_max = -math.inf
argmax_correct = 0.0
argmax_proposed = 0.0
argmax_gold = 0.0
max_stat_correct = -math.inf
min_stat_proposed = math.inf
min_stat_gold = math.inf
for annotator, gold in golds_set.items():
correct = matchSeq(editSeq, gold, ignore_whitespace_casing, verbose)
#gold = [(g[0], g[1], g[2], g[-1][0]) for g in gold]
weight_edits = compute_weight_edits(editSeq, gold, source, candidate, refs[annotator], scorer_type, scorer, sent_level=True)
# local cumulative counts, P, R and F1
stat_correct_local = stat_correct + sum(weight_edits[c] for c in correct)
stat_proposed_local = stat_proposed + sum(weight_edits[e] for e in editSeq)
stat_gold_local = stat_gold + sum(weight_edits[g] for g in gold)
p_local = comp_p(stat_correct_local, stat_proposed_local)
r_local = comp_r(stat_correct_local, stat_gold_local)
f1_local = comp_f1(p_local, r_local, beta)
if f1_max < f1_local or \
(f1_max == f1_local and max_stat_correct < stat_correct_local) or \
(
f1_max == f1_local and max_stat_correct == stat_correct_local and min_stat_proposed + sqbeta * min_stat_gold > stat_proposed_local + sqbeta * stat_gold_local):
chosen_ann = annotator
f1_max = f1_local
max_stat_correct = stat_correct_local
min_stat_proposed = stat_proposed_local
min_stat_gold = stat_gold_local
argmax_correct = sum(weight_edits[c] for c in correct)
argmax_proposed = sum(weight_edits[e] for e in editSeq)
argmax_gold = sum(weight_edits[g] for g in gold)
if verbose:
print(">> Chosen Annotator for line", i, ":", chosen_ann)
print("")
stat_correct += argmax_correct
stat_proposed += argmax_proposed
stat_gold += argmax_gold
if stat_proposed:
p = stat_correct / stat_proposed
else:
p = 1.0
if stat_gold:
r = stat_correct / stat_gold
else:
r = 1.0
if beta * beta * p + r:
f1 = (1.0 + beta * beta) * p * r / (beta * beta * p + r)
else:
f1 = 0.0
if verbose:
print("CORRECT EDITS :", int(stat_correct))
print("PROPOSED EDITS :", int(stat_proposed))
print("GOLD EDITS :", int(stat_gold))
print("P =", p)
print("R =", r)
print("F_%.1f =" % beta, f1)
return (p, r, f1)